Semiconductors

, Volume 47, Issue 10, pp 1346–1350 | Cite as

Composite system based on CdSe/ZnS quantum dots and GaAs nanowires

  • A. I. Khrebtov
  • V. G. Talalaev
  • P. Werner
  • V. V. Danilov
  • M. V. Artemyev
  • B. V. Novikov
  • I. V. Shtrom
  • A. S. Panfutova
  • G. E. Cirlin
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena

Abstract

The possibility of fabricating a composite system based on colloidal CdSe/ZnS quantum dots and GaAs nanowires is demonstrated and the structural and emission properties of this system are investigated by electron microscopy and photoluminescence spectroscopy techniques. The good wettability and developed surface of the nanowire array lead to an increase in the surface density of quantum dots and, as a consequence, in the luminosity of the system in the 600-nm wavelength region. The photoluminescence spectrum of the quantum dots exhibits good temperature stability in the entire range 10–295 K. The impact of surface states on energy relaxation and the role of exciton states in radiative recombination in the quantum dots are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Ekimov and A. A. Onushchenko, JETP Lett. 34, 345 (1981).ADSGoogle Scholar
  2. 2.
    G. E. Cirlin, G. M. Guryanov, A. O. Golubok, S. Ya. Tipissev, N. N. Ledentsov, P. S. Kop’ev, M. Grundmann, and D. Bimberg, Appl. Phys. Lett. 67, 97 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    P. M. Petrroff and S. P. Denbaars, Superlatt. Microstruct. 15, 15 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    G. E. Cirlin, V. N. Petrov, A. O. Golubok, S. Ya. Tipissev, V. G. Dubrovskii, G. M. Guryanov, N. N. Ledentsov, and D. Bimberg, Surf. Sci. 377–379, 895 (1997).CrossRefGoogle Scholar
  5. 5.
    G. E. Cirlin, V. G. Dubrovskii, V. N. Petrov, N. K. Polyakov, N. P. Korneeva, V. N. Demidov, A. O. Golubok, S. A. Masalov, D. V. Kurochkin, O. M. Gorbenko, N. I. Komyak, V. M. Ustinov, A. Yu. Egorov, A. R. Kovsh, M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, A. E. Zhukov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, M. Grundmann, and D. Bimberg, Semicond. Sci. Technol. 13, 1262 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).CrossRefGoogle Scholar
  7. 7.
    G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, Appl. Phys. Lett. 83, 17 (2003).CrossRefGoogle Scholar
  8. 8.
    C. B. Murray and C. R. Kagan, Ann. Rev. Mater. Sci. 30, 545 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    D. Valerini, A. Creti, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, Phys. Rev. B 71, 235409 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    A. O. Orlova, Y. A. Gromova, A. V. Savelyeva, V. G. Maslov, M. V. Artemyev, A. Prudnikau, A. V. Fedorov, and A. V. Baranov, Nanotechnology 22, 455201 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    G. I. Tselikov, V. Yu. Timoshenko, Yu. Plenge, E. Zyul’, A. M. Shatalova, G. A. Shandryuk, A. S. Merkalov, and R. V. Tal’roze, Semiconductors 47, 647 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    V. I. Klimov, Los Alamos Sci. 28, 214 (2003).Google Scholar
  13. 13.
    S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovich, Nature 420, 800 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, Phys. Rev. B 62, 2669 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    D. Talapin and C. Murray, Science 310, 86 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattuossi, Nature Mater. 4, 435 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    V. A. Oleinikov, A. V. Sukhanova, and I. R. Nabiev, Ross. Nanotekhnol., Nos. 1–2, 160 (2007).Google Scholar
  18. 18.
    B. P. Khanal, A. Pandey, L. Li, Qianglu Lin, Wan Ki Bae, Hongmei Luo, V. I. Klimov, and J. M. Pietryga, ACS Nano 6, 3832 (2012).CrossRefGoogle Scholar
  19. 19.
    G. E. Cirlin, V. G. Dubrovskii, Yu. B. Samsonenko, A. D. Bouravleuv, K. Durose, Y. Y. Proskuryakov, Budhikar Mendes, L. Bowen, M. A. Kaliteevski, R. A. Abram, and Dagou Zeze, Phys. Rev. B 82, 035302 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    D. Valerini, A. Creti, and M. Lomascolo, Phys. Rev. B 71, 335409 (2005).CrossRefGoogle Scholar
  21. 21.
    A. Antipov, M. Bell, M. Yasar, V. Mitin, W. Scharmach, M. Swihart, A. Verevkin, and A. Sergeev, Nano Express 6, 142 (2011).CrossRefGoogle Scholar
  22. 22.
    D. E. Cooper, J. Bajaj, and P. R. Newman, J. Cryst. Growth 86, 544 (1988).CrossRefADSGoogle Scholar
  23. 23.
    S. V. Karpov and S. V. Mikushev, Phys. Solid State 52, 1750 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. I. Khrebtov
    • 1
    • 2
  • V. G. Talalaev
    • 3
    • 4
    • 5
  • P. Werner
    • 5
  • V. V. Danilov
    • 2
    • 6
  • M. V. Artemyev
    • 7
  • B. V. Novikov
    • 3
    • 4
  • I. V. Shtrom
    • 1
    • 3
  • A. S. Panfutova
    • 2
  • G. E. Cirlin
    • 1
    • 3
    • 8
    • 9
  1. 1.Russian Academy of SciencesSt. Petersburg Academic University-Nanotechnology Research and Education CenterSt. PetersburgRussia
  2. 2.Vavilov State Optical InstituteSt. PetersburgRussia
  3. 3.Fock Institute of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Martin-Luther-Universität Halle-Wittenberg, ZIK SiLi-nanoHalle (Saale)Germany
  5. 5.Max-Planck-Institut für MikrostukturphysikHalle (Saale)Germany
  6. 6.Petersburg State Transport UniversitySt. PetersburgRussia
  7. 7.Institute for Physicochemical ProblemsBelarussian State UniversityMinskBelarus
  8. 8.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  9. 9.Institute for Analytical InstrumentationRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations