Advertisement

Semiconductors

, Volume 47, Issue 9, pp 1185–1192 | Cite as

Electron microscopy of GaAs-based structures with InAs and As quantum dots separated by an AlAs barrier

  • V. N. Nevedomskiy
  • N. A. Bert
  • V. V. Chaldyshev
  • V. V. Preobrazhenskiy
  • M. A. Putyato
  • B. R. Semyagin
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena

Abstract

Electron microscopy studies of GaAs-based structures grown by molecular beam epitaxy and containing arrays of semiconductor InAs quantum dots and metal As quantum dots are performed. The array of InAs quantum dots is formed by the Stranski-Krastanov mechanism and consists of vertically coupled pairs of quantum dots separated by a GaAs spacer 10 nm thick. To separate the arrays of semiconductor and metal quantum dots and to prevent diffusion-induced mixing, the array of InAs quantum dots is overgrown with an AlAs barrier layer 5 or 10 nm thick, after which a GaAs layer is grown at a comparatively low temperature (180°C). The array of As quantum dots is formed in an As-enriched layer of the low-temperature GaAs by means of post-growth annealing at 400–760°C for 15 min. It is established that the AlAs barrier layer has a surface profile corresponding to that of a subbarrier layer with InAs quantum dots. The presence of such a profile causes the formation of V-shaped structural defects upon subsequent overgrowth with the GaAs layer. Besides, it was obtained that AlAs layer is thinned over the InAs quantum dots tops. It is shown that the AlAs barrier layer in the regions between the InAs quantum dots effectively prevents the starting diffusion of excess As at annealing temperatures up to 600°C. However, the concentration of mechanical stresses and the reduced thickness of the AlAs barrier layer near the tops of the InAs quantum dots lead to local barrier breakthroughs and the diffusion of As quantum dots into the region of coupled pairs of InAs quantum dots at higher annealing temperatures.

Keywords

GaAs GaAs Layer Reflection High Energy Electron Diffraction Point Reflection Reflection High Energy Electron Diffraction Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Shalaev, Nature Photon. 1, 41 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    M. Achermann, J. Phys. Chem. Lett. 1, 2837 (2010).CrossRefGoogle Scholar
  3. 3.
    M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, Opt. Lett. 32, 2125 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    W. Zhang, A. O. Govorov, and G. W. Bryant, Phys. Rev. Lett. 97, 146804 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    H. A. Atwater and A. Polman, Nature Mater. 9, 205 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Nature 464(7285), 45 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T.Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, Adv. Mater. 20, 3100 (2008).CrossRefGoogle Scholar
  8. 8.
    M. L. Andersen, S. Stobbe, A. S. Sorensen, and P. Lodahl, Nature Phys. Lett. 7, 215 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    I. N. Stranski and L. Krastanow, Monatsh. Chem. 71, 351 (1937).CrossRefGoogle Scholar
  10. 10.
    Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, Phys. Rev. Lett. 75, 2542 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    M. R. Melloch, N. Otsuka, J. M. Woodall, A. C. Warren, and J. L. Freeouf, Appl. Phys. Lett. 57, 1531 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    N. A. Bert, A. I. Veinger, M. D. Vilisova, S. I. Goloshchapov, I. V. Ivonin, S. V. Kozyrev, A. E. Kunitsyn, L. G. Lavrent’eva, D. I. Lubyshev, V. V. Preobrazhenskii, B. R. Semyagin, V. V. Tret’yakov, V. V. Chaldyshev, and M. P. Yakubenya, Phys. Solid State 35, 1289 (1993).ADSGoogle Scholar
  13. 13.
    V. N. Nevedomskii, N. A. Bert, V. V. Chaldyshev, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Semiconductors 43, 1617 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    N. A. Bert, A. L. Kolesnikova, V. N. Nevedomskii, V. V. Preobrazhenskii, M. A. Putyato, A. E. Romanov, V. M. Seleznev, B. R. Semyagin, and V. V. Chaldyshev, Semiconductors 43, 1387 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    V. N. Nevedomskii, N. A. Bert, V. V. Chaldyshev, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Semiconductors 45, 1580 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    N. A. Cherkashin, A. Claverie, C. Bonafos, V. V. Chaldyshev, N. A. Bert, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, and P. Werner, J. Appl. Phys. 102, 023520 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    Q. Xie, P. Chen, and A. Madhukar, Appl. Phys. Lett. 65, 2051 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    A. F. Tsatsul’nikov, A. R. Kovsh, A. E. Zhukov, Yu. M. Shernyakov, Yu. G. Musikhin, V. M. Ustinov, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, A. M. Mintairov, J. L. Merz, N. N. Ledentsov, and D. Bimberg, J. Appl. Phys. 88, 6272 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    C. M. Tey, H. Y. Liu, A. G. Cullis, I. M. Ross, and M. Hopkinson, J. Cryst. Growth 285, 17 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    K. Sears, J. Wong-Leung, H. H. Tan, and C. Jagadish, J. Appl. Phys. 99, 113503 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. N. Nevedomskiy
    • 1
  • N. A. Bert
    • 1
  • V. V. Chaldyshev
    • 1
  • V. V. Preobrazhenskiy
    • 2
  • M. A. Putyato
    • 2
  • B. R. Semyagin
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations