Advertisement

Semiconductors

, Volume 47, Issue 8, pp 1026–1030 | Cite as

Study of the effect of the acid-base surface properties of ZnO, Fe2O3 and ZnFe2O4 oxides on their gas sensitivity to ethanol vapor

  • S. S. Karpova
  • V. A. Moshnikov
  • A. I. Maksimov
  • S. V. Mjakin
  • N. E. Kazantseva
Surfaces, Interfaces, and Thin Films

Abstract

Binary (ZnO, Fe2O3) and ternary (ZnFe2O4) gas-sensitive oxide materials are synthesized, and the correlation between their sensitivity to ethanol vapor and the functional chemical composition of the surface is studied by X-ray photoelectron spectroscopy and by the technique of the adsorption of acid-base indicators. It is found that the sensitivity to ethanol increases with increasing content of Brönsted acid sites with the acidity index pK a ≈ 2.5 and with increasing percentage of surface oxygen involved in OH/CO3/C-O groups. This interrelation is attributed to the specific features of interaction between ethanol molecules and hydroxyl groups on the surface of the oxides.

Keywords

Acid Site Zinc Oxide Surface Group Zinc Ferrite Ethanol Vapor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. F. Vol’kenshtein, Electron Processes on Semiconductor Surface (Nauka, Moscow, 1987) [in Russian].Google Scholar
  2. 2.
    B. F. Myasoedov and A. V. Davydov, Zh. Anal. Khim. 45, 1259 (1990).Google Scholar
  3. 3.
    N. Taguchi, US Patent No. 3695848 (1972).Google Scholar
  4. 4.
    Yu. Z. Bubnov, Peterb. Zh. Elektron., No. 3, 87 (1996).Google Scholar
  5. 5.
    A. Heilig, N. Barsan, U. Weimar, M. Schweizer-Berberich, J. W. Gardner, and W. Gopel, Sensors Actuat. B 43, 45 (1997).CrossRefGoogle Scholar
  6. 6.
    D. V. Russkikh and S. I. Rembeza, Semiconductors 43, 782 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    A. I. Maksimov, V. A. Moshnikov, Yu. M. Tairov, and O. A. Shilova, Principles of Sol-Gel Technology of Nanocomposites (Elmor, St.-Petersburg, 2008) [in Russian].Google Scholar
  8. 8.
    I. E. Gracheva, A. I. Maksimov, and V. A. Moshnikov, Poverkhnost’, No. 10, 16 (2009) [J. Surf. Invest. 3, 761 (2008).Google Scholar
  9. 9.
    V. V. Sysoev, N. I. Kucherenko, and V. V. Kisin, Tech. Phys. Lett. 30, 759 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    V. V. Sysoev, I. Kiselev, M. Frietsch, and J. Goschnick, Sensors 4, 37 (2004).CrossRefGoogle Scholar
  11. 11.
    M. Zuppa, C. Distante, P. Siciliano, and K. C. Persaud, Sensors Actuat. B 98, 305 (2004).CrossRefGoogle Scholar
  12. 12.
    A. A. Vasil’ev, I. M. Olikhov, and A. V. Sokolov, Elektron.: Nauka, Tekhnol., Biznes 2, 24 (2005).Google Scholar
  13. 13.
    V. A. Moshnikov, I. E. Gracheva, V. V. Kuznezov, A. I. Maximov, S. S. Karpova, and A. A. Ponomareva, J. Non-Cryst. Sol. 356, 2020 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    I. E. Gracheva, V. A. Moshnikov, E. V. Maraeva, O. A. Aleksandrova, N. I. Alekseyev, V. V. Kuznetsov, G. Olchowik, K. N. Semenov, A. V. Startseva, A. V. Sitnikov, and J. M. Olchowik, J. Non-Cryst. Sol. 358, 433 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    U.-S. Choi, G. Sakai, K. Shimanoe, and N. Yamazoe, Sensors Actuat. B 107, 397 (2005).CrossRefGoogle Scholar
  16. 16.
    M. N. Rumyantseva and A. M. Gas’kov, Izv. Akad. Nauk, Ser. Khim. 57, 1086 (2008).Google Scholar
  17. 17.
    V. V. Krivetskii, Extended Abstract of Candidate’s Dissertation (Moscow State Univ., Moscow, 2010).Google Scholar
  18. 18.
    S. V. Mjakin, M. M. Sychov, and I. V. Vasiljeva, Electron Beam Modification of Solids: Mechanisms, Common Features and Promising Applications (Nova Science, Hauppauge, New York, 2009).Google Scholar
  19. 19.
    A. S. Komolov, S. A. Komolov, E. F. Lazneva, and A. M. Turiev, Semiconductors 46, 45 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis (Prentice Hall, Upper Saddle River, 1986; Mir, Moscow, 1989).Google Scholar
  21. 21.
    N. V. Zakharova, M. M. Sychev, V. G. Korsakov, and S. V. Myakin, Kondens. Sredy Mezhfazn. Granitsy 13(1), 56 (2011).Google Scholar
  22. 22.
    I. V. Vasiljeva, S. V. Mjakin, A. V. Makarov, A. N. Krasovsky, and A. V. Varlamov, Appl. Surf. Sci. 252, 8768 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    A. Hernandez, L. Maya, E. Sanchez-Mora, and E. M. Sanchez, J. Sol-Gel Sci. Technol. 42, 71 (2007).CrossRefGoogle Scholar
  24. 24.
    I. V. Vasil’eva, S. V. Myakin, E. V. Rylova, and V. G. Korsakov, Russ. J. Phys. Chem. A 76, 71 (2002).Google Scholar
  25. 25.
    K. Tanabe, New Solid Acids and Bases (Elsevier, Amsterdam, 1989; Mir, Moscow, 1973).Google Scholar
  26. 26.
    A. Bardhan, C. K. Ghosh, M. K. Mitra, G. C. Das, S. Mukherjee, and K. K. Chattopadhyay, Solid State Sci. 12, 839 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    T. Yamashita and P. Hayes, Appl. Surf. Sci. 254, 2441 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    J. Hong, Y. Wang, G. He, and J. Wang, J. Non-Cryst. Sol. 356, 2778 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    X. Duan, C. Song, F. Yu, D. Yuan, and X. Li, Appl. Surf. Sci. 257, 4291 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    M. Rumyantseva, V. Kovalenko, A. Gaskov, E. Makshina, V. Yuschenko, I. Ivanova, A. Ponzoni, G. Faglia, and E. Comini, Sensors Actuat. B 118, 208 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. S. Karpova
    • 1
  • V. A. Moshnikov
    • 1
  • A. I. Maksimov
    • 1
  • S. V. Mjakin
    • 2
  • N. E. Kazantseva
    • 3
  1. 1.St. Petersburg State Electrotechnical University “LETI”St. PetersburgRussia
  2. 2.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia
  3. 3.Tomas Bata University in ZlinZlinCzech Republic

Personalised recommendations