Semiconductors

, Volume 47, Issue 7, pp 911–915 | Cite as

Absorption and photoionization of the donor level in CdF2 semiconductor crystals

  • S. A. Kazanskii
  • A. S. Shcheulin
  • A. E. Angervaks
  • A. I. Ryskin
Spectroscopy, Interaction with Radiation
  • 36 Downloads

Abstract

A model of strong vibronic interaction is proposed to interpret the specific features of infrared absorption and photoionization in CdF2 semiconductor crystals. The model takes into account the polaronic nature of the conductivity in these crystals and the profound configuration shift of the free and bound polaron states. It is shown that the intense infrared absorption band in the crystals is not due to the transitions of charge carriers from hydrogen-like donor levels to the conduction band, but is caused by the phonon replicas of intracenter transitions. The low-temperature photoconductivity (in the temperature range 0–70 K) is a result of tunneling transitions between the phonon states of bound and free polarons, since these states are separated by rather high potential barriers. Overcoming the barriers in both directions is responsible for equilibration in the polaron subsystem upon the photoexcitation of charge carriers. The tunneling character of this process is responsible for the slight variation in the equilibration time in the above-indicated temperature range.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Kingsley and J. S. Prener, Phys. Rev. Lett. 8, 315 (1962).ADSCrossRefGoogle Scholar
  2. 2.
    P. F. Weller, Inorg. Chem. 4, 1545 (1965).CrossRefGoogle Scholar
  3. 3.
    R. P. Khosla and D. Matz, Solid State Commun. 6, 859 (1968).ADSCrossRefGoogle Scholar
  4. 4.
    R. P. Khosla, Phys. Rev. 183, 695 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    J. M. Langer, G. L. Pearson, T. Langer, and B. Krukowska-Fulde, Solid State Commun. 13, 767 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    J. M. Langer, T. Langer, G. L. Pearson, B. KrukowskaFulde, and U. Piekara, Phys. Status Solidi B 66, 537 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    T. H. Lee and F. Moser, Phys. Rev. B 3, 347 (1971).ADSCrossRefGoogle Scholar
  8. 8.
    B. J. Feldman and P. S. Pershan, Solid State Commun. 11, 1131 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    J. E. Dmochowski, I. Kosaki, and J. M. Langer, Rad. Eff. Def. Solids 72, 139 (1983).CrossRefGoogle Scholar
  10. 10.
    J. M. Langer, in Reviews of Solid State Science (World Scientific, Singapore, 1990), vol. 4, p. 297.Google Scholar
  11. 11.
    S. A. Kazanskii, Y. Guyot, J.-C. Gacon, M.-F. Joubert, and C. Pedrini, Opt. Spectrosc. 104, 345 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    S. Grabtchak and M. Cocivera, Phys. Rev. B 58, 4701 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    M. Ichimura, N. Yamada, H. Tajiri, and E. Arai, J. Appl. Phys. 84, 2727 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    S. V. Garnov, A. I. Ritus, S. M. Klimentov, S. M. Pimenov, V. I. Konov, S. Gloor, W. Lüthy, and H. P. Weber, Appl. Phys. Lett. 74, 1731 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    N. F. Mott and E. A. Davis, Electron Processes in Non-Crystalline Solids (Clarendon Press, Oxford, UK, 1979).Google Scholar
  16. 16.
    D. V. Lang, R. A. Logan, and M. Jaros, Phys. Rev. B 19, 1015 (1979).ADSCrossRefGoogle Scholar
  17. 17.
    A. M. Stoneham, Rep. Prog. Phys. 44, 1251 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    C. H. Henry and D. V. Lang, Phys. Rev. B 15, 989 (1977).ADSCrossRefGoogle Scholar
  19. 19.
    R. Pässler,, J. Appl. Phys. 97, 113533 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    H. Kukimoto, S. Shionoya, T. Koda, and R. Hioki, J. Phys. Chem. Solids 29, 935 (1968).ADSCrossRefGoogle Scholar
  21. 21.
    I. I. Saidashev, E. Yu. Perlin, A. I. Ryskin, and A. S. Shcheulin, Semiconductors 39, 506 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    P. Eisenberger and P. S. Pershan, Phys. Rev. 167, 292 (1968).ADSCrossRefGoogle Scholar
  23. 23.
    C. W. Struck and W. H. Fonger, J. Luminesc. 10, 1 (1975).ADSCrossRefGoogle Scholar
  24. 24.
    D. I. Stasel’ko, S. A. Tikhomirov, O. V. Buganov, A. S. Shcheulin, A. E. Angervaks, and A. I. Pyskin, Opt. Spectrosc. 110, 33 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. A. Kazanskii
    • 1
  • A. S. Shcheulin
    • 1
  • A. E. Angervaks
    • 1
  • A. I. Ryskin
    • 1
  1. 1.St. Petersburg National Research University of Information TechnologiesMechanics, and Optics, St. PetersburgRussia

Personalised recommendations