Advertisement

Semiconductors

, Volume 47, Issue 1, pp 95–104 | Cite as

On the specific features of the density of states of epitaxial graphene formed on metal and semiconductor substrates

  • S. Yu. Davydov
Carbon Systems

Abstract

Analytical expressions for the local densities of states of epitaxial graphene formed on metal and semiconductor substrates are derived on unified grounds. The conditions of strong and weak graphene-substrate coupling are considered. It is shown that, in the case of strong coupling (the interaction of carbon atoms of graphene with the substrate is much stronger than that of carbon atoms with each other), the local density of states of graphene is close to the density of states of an individual carbon adatom on both metal and semiconductor substrates. In the opposite case of weak graphene-(semiconductor substrate) coupling (the interaction of carbon atoms of graphene with the substrate is much weaker than that of carbon atoms with each other), there is no gap in the local density of states of graphene, and the Dirac point is in the band gap of the semiconductor substrate and coincides in energy with the local level of the separated (individual) carbon adatom. Graphene formed on a metal substrate also exhibits a zero-gap density of states. The problem of the band gap induced in graphene by a semiconductor substrate is considered in the general case. It is shown that, depending on the relation between the parameters of the problem, either one or two band gaps overlapping in energy with the band gap of the substrate can exist in the spectrum of graphene. The dependence of the band gaps on the strength of the graphene-substrate interaction is constructed. Numerical estimations are performed for epitaxial graphene formed on 6H-SiC {0001} faces.

Keywords

Valence Band Buffer Layer Dirac Point Epitaxial Graphene Graphene Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    V. N. Kotov, B. Uchoa, V. V. Pereira, A. H. Castro Neto, and F. Guinea, arXiv: 1012.3484.Google Scholar
  3. 3.
    I. V. Falkovsky and D. V. Vassilevich, arXiv: 1111.3017.Google Scholar
  4. 4.
    D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, arXiv: 1110.6557.Google Scholar
  5. 5.
    Y. H. Wu, T. Yu, and Z. X. Shen, J. Appl. Phys. 108, 071301 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    J. Haas, W. A. deHeer, and E. H. Conrad, J. Phys.: Condens. Matter 20, 323202 (2008).CrossRefGoogle Scholar
  7. 7.
    Th. Seyller, A. Botswick, K. V. Emtsev, K. Horn, L. Ley, J. L. McChestney, T. Ohta, J. D. Riley, E. Rotenberg, and F. Speck, Phys. Status Solidi B 245, 1436 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    C. Mathieu, N. Barret, J. Rault, Y. Y. Mi, B. Zhang, W. A. de Heer, C. Berger, F. H. Conrad, and O. Renault, arXiv:1104.1359.Google Scholar
  9. 9.
    N. Srivastava, G. He, Luxmi, and R. M. Feenstra, Phys. Rev. B 85, 041404 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    S. Goler, C. Coletti, V. Pellegrini, K. V. Emtsev, U. Starke, F. Beltram, and S. Heun, arXiv: 1111.4918.Google Scholar
  11. 11.
    T. Jayasekera, S. Xu, K. W. Kim, and M. B. Nardelli, Phys. Rev. B 84, 035442 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    I. Deretzis and A. LaMagna, arXiv: 1103.0839.Google Scholar
  13. 13.
    S. Yu. Davydov, Tech. Phys. Lett. 37, 476 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    S. Yu. Davydov, Semiconductors 45, 1070 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    S. Yu. Davydov, Phys. Solid State 54, 1728 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nature Mater. 6, 770 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    L. Vitali, C. Riedl, R. Ohmann, I. Brihuega, U. Starke, and K. Kern, Surf. Sci. 602, L127 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    O. Pankratov, S. Hendel, and M. Bockstedle, arXiv: 1009.2185.Google Scholar
  19. 19.
    S. Kim, J. Ihm, H. J. Choi, and Y.-W. Son, Phys. Rev. Lett. 100, 17802 (2008).Google Scholar
  20. 20.
    B. Huang, H. J. Xiang, and S.-H. Wei, Phys. Rev. B 83, 161405(R) (2011).ADSGoogle Scholar
  21. 21.
    A. Mattausch and O. Pankratov, Phys. Rev. Lett. 99, 076802 (2007).Google Scholar
  22. 22.
    S. Yu. Davydov, Semiconductors 45, 618 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    P. W. Anderson, Phys. Rev. 124, 41 (1961).MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    F. D. M. Haldane and P. W. Anderson, Phys. Rev. B 13, 2553 (1976).ADSCrossRefGoogle Scholar
  25. 25.
    W. A. de Heer, C. Berger, X. Wu, M. Sprinkle, Y. Hu, M. Ruan, J. A. Stroscio, P. N. First, R. Haddon, B. Piot, C. Faugeras, M. Potemski, and J. S. Moon, J. Phys. D: Appl. Phys. 43, 374077 (2010).Google Scholar
  26. 26.
    K. V. Emtsev, F. Speck, Th. Seyller, L. ley, and D. Riley, Phys. Rev. B 77, 155303 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Haas, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312, 1191 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    Y. M. Lin, C. Dimitrakopoulos, D. V. Farmer, S. J. Han, Y. Q. Wu, W. J. Zhu, D. K. Gaskil, J. L. Tedesco, R. L. Myerd-Ward, C. R. Eddy, Jr., A. Grill, and P. Avouris, Appl. Phys. Lett. 97, 112107 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    D. L. Miller, R. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, P. N. First, and J. A. Stroscio, Science 324, 994 (2009).Google Scholar
  30. 30.
    T. Hofmann, A. Boosalis, B. Ruhne, C. M. Herzinger, J. A. Woollam, D. K. Gaskill, J. L. Tedesco, and M. Schubert, Appl. Phys. Lett. 98, 041906 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    S. Yu. Davydov, Semiconductors 41, 696 (2007).ADSCrossRefGoogle Scholar
  32. 32.
    S. Yu. Davydov, Semiconductors 46, 193 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    W. A. Harrison, Phys. Rev. B 27, 3592 (1983).ADSCrossRefGoogle Scholar
  34. 34.
    J. L. Mercer, Phys. Rev. B 54, 4650 (1996).ADSCrossRefGoogle Scholar
  35. 35.
    C. Persson and U. Lindefelt, J. Appl. Phys. 82, 5496 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations