Advertisement

Semiconductors

, Volume 47, Issue 1, pp 127–134 | Cite as

Tunnel injection and power efficiency of InGaN/GaN light-emitting diodes

  • N. I. Bochkareva
  • V. V. Voronenkov
  • R. I. Gorbunov
  • P. E. Latyshev
  • Yu. S. Lelikov
  • Yu. T. Rebane
  • A. I. Tsyuk
  • Yu. G. ShreterEmail author
Physics of Semiconductor Devices

Abstract

The results of studying the influence of the finite tunneling transparency of injection barriers in light-emitting diodes with InGaN/GaN quantum wells on the dependences of the current, capacitance, and quantum efficiency on the p-n junction voltage and temperature are presented. It is shown that defectassisted hopping tunneling is the main transport mechanism through the space charge region (SCR) and makes it possible to lower the injection barrier. It is shown that, in the case of high hopping conductivity through the injection barrier, the tunnel-injection current into InGaN band-tail states is limited only by carrier diffusion from neutral regions and is characterized by a close-to-unity ideality factor, which provides the highest quantum and power efficiencies. An increase in the hopping conductivity through the space charge region with increasing frequency, forward bias, or temperature has a decisive effect on the capacitance-voltage characteristics and temperature dependences of the high-frequency capacitance and quantum efficiency. An increase in the density of InGaN/GaN band-tail states and in the hopping conductivity of injection barriers is necessary to provide the high-level tunnel injection and close-to-unity power efficiency of high-power light-emitting diodes.

Keywords

Ideality Factor Space Charge Region Power Efficiency Forward Bias External Quantum Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    P. Perlin, V. Iota, B. A. Weinstein, P. Wisniewski, T. Suski, P. G. Eliseev, and M. Osinski, Appl. Phys. Lett. 70, 2993 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Narukava, Y. Kavakami, S. Fujita, and S. Nakamura, Phys. Rev. B 59, 10283 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Yu. S. Lelikov, F. E. Latyshev, Yu. T. Rebane, A. I. Tsyuk, and Yu. G. Shreter, Semiconductors 44, 794 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, J. Phys. D: Appl. Phys. 43, 354002 (2010).CrossRefGoogle Scholar
  6. 6.
    S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 34, L1332 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    T. Mukai, K. Takekava, and S. Nakamura, Jpn. J. Appl. Phys. 37, L839 (1996).CrossRefGoogle Scholar
  8. 8.
    N. I. Bochkareva, E. A. Zhirnov, A. A. Efremov, Yu. T. Rebane, R. I. Gorbunov, A. V. Klochkov, D. A. Lavrinovich, and Yu. G. Shreter, Semiconductors 39, 795 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    G. Meneghesso, S. Levada, E. Zanoni, S. Podda, G. Mura, M. Vanzi, A. Cavallini, A. Castaldini, S. Du, and I. Eliashevich, Phys. Status Solidi A 194, 389 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. Kim, B. Luo, R. Mehandru, F. Ren, K. P. Lee, S. J. Pearton, A. V. Osinsky, and P. E. Norris, J. Appl. Phys. 91, 5203 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    J. Hu, L. Yang, L. Kim, and M. W. Shin, Semicond. Sci. Technol. 22, 1249 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    N. I. Bochkareva, A. A. Efremov, Yu. T. Rebane, R. I. Gorbunov, A. V. Klochkov, and Yu. G. Shreter, Semiconductors 40, 118 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    P. Perlin, M. Osinski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas, and P. Sartori, Appl. Phys. Lett. 69, 1680 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    V. E. Kudryashov, A. N. Turkin, A. E. Yunovich, A. N. Kovalev, and F. I. Manyakhin, Semiconductors 33, 429 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    C. H. Qiu, C. Hoggatt, W. Melton, M. W. Leksono, and J. I. Pankove, Appl. Phys. Lett. 66, 2712 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    L. Balagurov and P. J. Chong, Appl. Phys. Lett. 68, 43 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).Google Scholar
  19. 19.
    N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, F. E. Latyshev, Yu. S. Lelikov, Yu. T. Rebane, A. I. Tsyuk, and Yu. G. Shreter, Semiconductors 46, 1032 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    D. V. Lang, J. D. Cohen, and J. P. Harbison, Phys. Rev. B 25, 5285 (1982).ADSCrossRefGoogle Scholar
  21. 21.
    J. D. Cohen and D. V. Lang, Phys. Rev. B 25, 5321 (1982).ADSCrossRefGoogle Scholar
  22. 22.
    J. C. Dyre, J. Appl. Phys. 64, 2456 (1988).ADSCrossRefGoogle Scholar
  23. 23.
    Don Monroe, Phys. Rev. Lett. 54, 146 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    P. Viktorovich and G. Model, J. Appl. Phys. 51, 4847 (1980).ADSCrossRefGoogle Scholar
  25. 25.
    R. J. Molnar, T. Lei, and T. D. Moustakas, Appl. Phys. Lett. 62, 72 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    S. Yamasaki, S. Asami, N. Shibata, M. Koike, K. Manabe, T. Tanaka, H. Amano, and I. Akasaki, Appl. Phys. Lett. 66, 1112 (1995).ADSCrossRefGoogle Scholar
  27. 27.
    H. Katayama-Yoshida, T. Nishimatsu, T. Yamamoto, and N. Orita, J. Phys.: Condens. Matter 13, 8901 (2001).ADSCrossRefGoogle Scholar
  28. 28.
    M. Toth, K. Fleischer, and M. R. Phillips, Phys. Rev. B 59, 1575 (1999).ADSCrossRefGoogle Scholar
  29. 29.
    S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, 1998), p. 343.Google Scholar
  30. 30.
    P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figger, and D. Hommel, J. Appl. Phys. 98, 093519 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • N. I. Bochkareva
    • 1
  • V. V. Voronenkov
    • 2
  • R. I. Gorbunov
    • 1
  • P. E. Latyshev
    • 3
  • Yu. S. Lelikov
    • 1
  • Yu. T. Rebane
    • 1
  • A. I. Tsyuk
    • 1
  • Yu. G. Shreter
    • 1
    Email author
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Saint Petersburg State Polytechnical UniversitySt. PetersburgRussia
  3. 3.Fock Institute of PhysicsSt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia

Personalised recommendations