, Volume 46, Issue 13, pp 1593–1597 | Cite as

Quasi-one-dimensional molecular transistors based on polyaniline and carbon nanotubes as electrodes

  • I. I. Bobrinetskii
  • V. K. Nevolin
  • A. V. Romashkin
Microelectronic and Nanoelectronic Technology


The technique for forming molecular quasi-one-dimensional conductors in an ac electric field, based on polyaniline molecules and multiwalled carbon nanotubes as supply leads, is proposed. The conductor diameter is ∼10 nm and its length is up to 150 nm. The presence of the field effect in the fabricated structures is demonstrated. The maximum carrier mobility is determined as 1.16 cm2/(V s).


PANI PANI Film Catalytic Pyrolysis PANI Solution Homo Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Tsukagoshi, I. Yagi, and Y. Aoygi, Appl. Phys. Lett. 85, 1021 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    Long Zhang and Peng Liu, Nanoscale Res. Lett. 3, 299 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    A. J. Higer, Synth. Met. 125, 23 (2002).CrossRefGoogle Scholar
  4. 4.
    I. I. Bobrinetskii, V. K. Nevolin, S. V. Khartov, and Yu. A. Chaplygin, Tech. Phys. Lett. 31, 885 (2005).CrossRefGoogle Scholar
  5. 5.
    A. Southard, V. Sangwan, J. Cheng, et al., Org. Electron. 10, 1556 (2009).CrossRefGoogle Scholar
  6. 6.
    E. G. Rakov, I. V. Anoshkin, N. C. Khung, et al., Theor. Found. Chem. Eng. 42, 595 (2008).CrossRefGoogle Scholar
  7. 7.
    C. Klinke, J. Chen, A. Afzali, and P. Avouris, Nano Lett. 5, 555 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    N. Chandrakanthi and M. A. Careem, Polym. Bull. 44, 101 (2000).CrossRefGoogle Scholar
  9. 9.
    W. K. Maser, A. M. Benito, M. A. Callejas, et al., Mater. Sci. Eng. C 23, 87 (2003).CrossRefGoogle Scholar
  10. 10.
    H. Zengin, W. Zhou, J. Jin, et al., Adv. Mater. 14, 1480 (2002).CrossRefGoogle Scholar
  11. 11.
    Y. Sun, S. R. Wilson, and D. I. Schuster, J. Am. Chem. Soc. 123, 5348 (2001).CrossRefGoogle Scholar
  12. 12.
    C. L. Cao, C. G. Hu, L. Fang, et al., J. Nanomater. 2011, 707303 (2011). Google Scholar
  13. 13.
    A. Gohier, J. Chancolon, P. Chenevier, et al., Nanotechnology 22, 105501–1 (2011). ADSCrossRefGoogle Scholar
  14. 14.
    J.-E. Huang, X.-H. Li, J.-C. Xu, and H.-L. Li, Carbon 41, 2731 (2003).CrossRefGoogle Scholar
  15. 15.
    Z. Fan, D. Wang, Pai-Chun Chang, et al., Appl. Phys. Lett. 85, 5923 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Liao, C. Zhang, X. Wang, et al., J. Phys. Chem. C 115, 16187 (2011).CrossRefGoogle Scholar
  17. 17.
    A. K. Wanekaya, M. A. Bangar, Minhee Yun, et al., J. Phys. Chem. C 111, 5218 (2007).CrossRefGoogle Scholar
  18. 18.
    S. J. Pomfret, P. N. Adams, N. P. Comfort, and A. P. Monkman, Polymer 41, 2265 (2000).CrossRefGoogle Scholar
  19. 19.
    Y. Cao, P. Smith, and A. J. Heeger, Synth. Met. 32, 263 (1989).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • I. I. Bobrinetskii
    • 1
  • V. K. Nevolin
    • 1
  • A. V. Romashkin
    • 1
  1. 1.National Research University of Electronic TechnologyZelenograd, MoscowRussia

Personalised recommendations