Semiconductors

, Volume 46, Issue 11, pp 1402–1406 | Cite as

Study of methods for lowering the lasing frequency of a terahertz quantum-cascade laser based on two quantum wells

XVI Symposium “nanophysics and Nanoelectronics”, Nizhni Novgorod, March 12–16, 2012
  • 65 Downloads

Abstract

Two mechanisms for achieving lower terahertz-range frequencies in quantum-cascade structures with two quantum wells based on GaAs/AlGaAs compounds are proposed. The first mechanism is based on the introduction of composite quantum wells consisting of a narrow (∼2 nm) quantum well with a low potential barrier, being within the main wide quantum well. The second mechanism is based on barriers with unequal heights, arranged in front of and behind the composite quantum well. Optimized quantum-cascade laser structures emitting in the regions of ∼2.15 and ∼1.35 THz are calculated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Electron. Lett. 42, 89 (2006).CrossRefGoogle Scholar
  2. 2.
    H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, and H. C. Liu, Appl. Phys. Lett. 90, 041112 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    B. S. Williams, Nature Photon. 1, 517 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    S. Kumar, C. W. I. Chan, Q. Hu, and J. Reno, Appl. Phys. Lett. 95, 141110 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    S. Kumar, Q. Hu, and J. Reno, Appl. Phys. Lett. 94, 131105 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, Nature Photon. 3, 41 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    K. H. Yoo, L. R. Ram-Mohan, and D. F. Nelson, Phys. Rev. B 39, 12808 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    D. V. Ushakov and I. S. Manak, Opt. Spectrosc. 104, 767 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    D. V. Ushakov and I. S. Manak, J. Appl. Spectrosc. 74, 892 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    D. V. Ushakov, V. K. Kononenko, and I. S. Manak, Quantum Electron. 40, 195 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    A. V. Antonov, V. I. Gavrilenko, A. V. Ikonnikov, K. V. Maremyanin, A. A. Lastovkin, S. V. Morozov, D. V. Ushakov, Yu. G. Sadofyev, and N. Samal, Radiophys. and Quantum Electron. 52, 494 (2009).CrossRefGoogle Scholar
  13. 13.
    Yu. G. Sadofyev, in Proceedings of the All-Russia Symposium on Nanophysics and Nanoelectronics (Nizh. Novgorod, 2011), Vol. 1, p. 244.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Belarussian State UniversityMinskBelarus
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Trion TechnologyTempeUSA

Personalised recommendations