Semiconductors

, Volume 46, Issue 11, pp 1460–1470 | Cite as

Light-emitting tunneling nanostructures based on quantum dots in a Si and GaAs matrix

  • V. G. Talalaev
  • A. A. Tonkikh
  • N. D. Zakharov
  • A. V. Senichev
  • J. W. Tomm
  • P. Werner
  • B. V. Novikov
  • L. V. Asryan
  • B. Fuhrmann
  • J. Schilling
  • H. S. Leipner
  • A. D. Bouraulev
  • Yu. B. Samsonenko
  • A. I. Khrebtov
  • I. P. Soshnikov
  • G. E. Cirlin
XVI Symposium “Nanophysics and Nanoelectronics”, Nizhni Novgorod, March 12–16, 2012

Abstract

InGaAs/GaAs and Ge/Si light-emitting heterostructures with active regions consisting of a system of different-size nanoobjects, i.e., quantum dot layers, quantum wells, and a tunneling barrier are studied. The exchange of carriers preceding their radiative recombination is considered in the context of the tunneling interaction of nanoobjects. For the quantum well-InGaAs quantum dot layer system, an exciton tunneling mechanism is established. In such structures with a barrier thinner than 6 nm, anomalously fast carrier (exciton) transfer from the quantum well is observed. The role of the above-barrier resonance of states, which provides “instantaneous” injection into quantum dots, is considered. In Ge/Si structures, Ge quantum dots with heights comparable to the Ge/Si interface broadening are fabricated. The strong luminescence at a wavelength of 1.55 μm in such structures is explained not only by the high island-array density. The model is based on (i) an increase in the exciton oscillator strength due to the tunnel penetration of electrons into the quantum dot core at low temperatures (T < 60 K) and (ii) a redistribution of electronic states in the Δ24 subbands as the temperature is increased to room temperature. Light-emitting diodes are fabricated based on both types of studied structures. Configuration versions of the active region are tested. It is shown that selective pumping of the injector and the tunnel transfer of “cold” carriers (excitons) are more efficient than their direct trapping by the nanoemitter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, Electron. Lett. 30, 1416 (1994).CrossRefGoogle Scholar
  2. 2.
    A. E. Zhukov, Lasers Based on Semiconductor Nanostructures (Elmor, St.-Petersburg, 2007) [in Russian].Google Scholar
  3. 3.
    A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, N. A. Maleev, V. M. Ustinov, B. V. Volovik, M. V. Maksimov, A. F. Tsatsul’nikov, N. N. Ledentsov, Yu. M. Shernyakov, A. V. Lunev, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, and Zh. I. Alferov, Semiconductors 33, 153 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    M. M. Rieger and P. Vogl, Phys. Rev. B 48, 14276 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, Appl. Phys. Lett. 71, 258 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    V. Ya. Aleshkin, N. A. Bekin, N. G. K. Kalugin, Z. F. Krasil’nik, A. V. Novikov, and V. V. Postnikov, JETP Lett. 67, 48 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    O. G. Schmidt, K. Eberl, and Y. Rau, Phys. Rev. B 62, 16715 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    A. V. Dvurechenskii and A. I. Yakimov, Semiconductors 35, 1095 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    V. G. Talalaev, G. E. Tsyrlin, A. A. Tonkikh, N. D. Zakharov, P. Werner, U. Gösele, J. W. Tomm, and T. Elsaesser, Nanoscale Res. Lett. 1, 137 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Novikov, M. V. Shaleev, A. N. Yablonskii, O. A. Kuznetsov, Yu. N. Drozdov, D. N. Lobanov, and Z. F. Krasilnik, Semicond. Sci. Technol. 22, S29 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    L. V. Asryan and S. Luryi, IEEE J. Quant. Electron. 37, 905 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    L. F. Register, C. Wanqiang, X. Zheng, and M. Stroscio, Int. J. High Speed Electron. Syst. 12, 239 (2001).Google Scholar
  13. 13.
    P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, Z. K. Wu, J. Urayama, K. Kim, and T. B. Norris, IEEE J. Quant. Electron. 39, 952 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    Z. Mi, P. Bhattacharya, and S. Fathpour, Appl. Phys. Lett. 86, 153109 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    V. P. Evtikhiev, O. V. Konstantinov, A. V. Matveentsev, and A. E. Romanov, Semiconductors 36, 74 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    G. Sek, P. Poloczek, P. Podemski, R. Kudrawiec, J. Misiewicz, A. Somers, S. Hein, S. Höfling, and A. Forchel, Appl. Phys. Lett. 90, 081915 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    V. G. Talalaev, J. W. Tomm, N. D. Zakharov, P. Werner, U. Gösele, B. V. Novikov, A. S. Sokolov, Yu. B. Samsonenko, V. A. Egorov, and G. E. Tsyrlin, Appl. Phys. Lett. 93, 031105 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    V. G. Talalaev, A. V. Senichev, B. V. Novikov, J. W. Tomm, T. Elsaesser, N. D. Zakharov, P. Werner, U. Gösele, Yu. B. Samsonenko, and G. E. Tsyrlin, Semiconductors 44, 1050 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    Yu. I. Mazur, Zh. M. Wang, and G. G. Tarasov, Phys. Rev. B 71, 235313 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    V. G. Talalaev, J. W. Tomm, A. S. Sokolov, I. V. Shtrom, B. V. Novikov, A. Winzer, R. Goldhahn, G. Gobsch, N. D. Zakharov, P. Werner, U. Gösele, G. E. Tsyrlin, A. A. Tonkikh, V. M. Ustinov, and G. G. Tarasov, J. Appl. Phys. 100, 083704 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    T. Tada, A. Yamaguchi, T. Ninomiya, H. Uchiki, T. Kobayashi, and T. Yao, J. Appl. Phys. 63, 5491 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    M. Nido, M. G. W. Alexander, and W. W. Ruehle, Appl. Phys. Lett. 56, 355 (1990).ADSCrossRefGoogle Scholar
  23. 23.
    J. N. Zeng, I. Souma, Y. Amemiya, and Y. Oka, J. Surf. Anal. 3, 529 (1997).Google Scholar
  24. 24.
    S. V. Zaitsev, A. S. Brichkin, P. S. Dorozhkin, and G. Bacher, Semiconductors 42, 813 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    I. Lawrence, S. Haacke, H. Mariette, W. W. Rühle, H. Ulmer-Tuffigo, J. Cibert, and G. Feuillet, Phys. Rev. Lett. 73, 2131 (1994).ADSCrossRefGoogle Scholar
  26. 26.
    S. Ten, F. Henneberger, M. Rabe, and N. Peyghambarian, Phys. Rev. B 53, 12637 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    D. A. Mazurenko and A. V. Akimov, Phys. Solid State 43, 752 (2001).ADSCrossRefGoogle Scholar
  28. 28.
    S. V. Zaitsev, A. S. Brichkin, Yu. A. Tarakanov, and G. Bacher, Phys. Status Solidi B 247, 353 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    A. Tomita, J. Shah, and R. S. Knox, Phys. Rev. B 53, 10793 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    S. K. Lyo, Phys. Rev. B 62, 13641 (2000).ADSCrossRefGoogle Scholar
  31. 31.
    F. C. Michl, R. Winkler, and U. Roessler, Solid State Commun. 99, 13 (1996).ADSCrossRefGoogle Scholar
  32. 32.
    V. G. Talalaev, A. V. Senichev, B. V. Novikov, J. W. Tomm, L. V. Asryan, N. D. Zakharov, P. Werner, A. D. Buravlev, Yu. B. Samsonenko, A. I. Khrebtov, I. P. Soshnikov, and G. E. Tsyrlin, Vestn. SPb. Univ. (2012, in press).Google Scholar
  33. 33.
    A. V. Senichev, V. G. Talalaev, J. W. Tomm, B. V. Novikov, P. Werner, and G. E. Tsyrlin, Phys. Status Solidi (RRL) 5, 385 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    Ch. S. Kim, A. M. Satanin, and V. B. Shtenberg, Semiconductors 36, 539 (2002).ADSCrossRefGoogle Scholar
  35. 35.
    R. C. Iotti and L. C. Andreani, Semicond. Sci. Technol. 10, 1561 (1995).ADSCrossRefGoogle Scholar
  36. 36.
    M. Bayer, S. N. Walck, and T. L. Reinecke, Phys. Rev. B 57, 6584 (1998).ADSCrossRefGoogle Scholar
  37. 37.
    I. Galbraith and G. Duggan, Phys. Rev. B 40, 5515 (1989).ADSCrossRefGoogle Scholar
  38. 38.
    H. Sunamura, S. Fukatsu, N. Usami, and Y. Shiraki, J. Cryst. Growth 157, 265 (1995).ADSCrossRefGoogle Scholar
  39. 39.
    O. G. Schmidt, O. Kienzle, Y. Hao, K. Eberl, and F. Ernst, Appl. Phys. Lett. 74, 1272 (1999).ADSCrossRefGoogle Scholar
  40. 40.
    K. Eberl, O. G. Schmidt, R. Duschl, O. Kienzle, E. Ernst, and Y. Rau, Thin Solid Films 369, 33 (2000).ADSCrossRefGoogle Scholar
  41. 41.
    A. V. Novikov, D. N. Lobanov, A. N. Yablonskii, Y. N. Drozdov, N. V. Vostokov, and Z. F. Krasilnik, Physica E 16, 467 (2003).ADSCrossRefGoogle Scholar
  42. 42.
    T. Baier, U. Mantz, K. Thonke, R. Sauer, F. Schäffler, and H.-J. Herzog, Phys. Rev. B 50, 15191 (1994).ADSCrossRefGoogle Scholar
  43. 43.
    M. El Kurdi, S. Sauvage, G. Fishman, and P. Boucaud, Phys. Rev. B 73, 195327 (2006).ADSCrossRefGoogle Scholar
  44. 44.
    A. Tonkikh, N. Zakharov, V. Talalaev, and P. Werner, Phys. Status Solidi (RRL) 4, 224 (2010).ADSCrossRefGoogle Scholar
  45. 45.
    T. M. Burbaev, T. N. Zavaritskaya, V. A. Kurbatov, N. N. Mel’nik, V. A. Tsvetkov, K. S. Zhuravlev, V. A. Markov, and A. I. Nikiforov, Semiconductors 35, 941 (2001).ADSCrossRefGoogle Scholar
  46. 46.
    V. Ya. Aleshkin and N. A. Bekin, J. Phys.: Condens. Matter 9, 4841 (1997).ADSCrossRefGoogle Scholar
  47. 47.
    M. L. W. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, and H. Lafontaine, Phys. Rev. Lett. 79, 269 (1997).ADSCrossRefGoogle Scholar
  48. 48.
    B. V. Kamenev, L. Tsybeskov, J. Baribeau, and D. J. Lockwood, Phys. Rev. B 72, 193306 (2005).ADSCrossRefGoogle Scholar
  49. 49.
    M. Larsson, A. Elfving, W.-X. Ni, G. V. Hansson, and P. O. Holtz, Phys. Rev. B 73, 195319 (2006).ADSCrossRefGoogle Scholar
  50. 50.
    B. Julsgaard, P. Balling, J. L. Hansen, A. Svane, and A. N. Larsen, Appl. Phys. Lett. 98, 093101 (2011).ADSCrossRefGoogle Scholar
  51. 51.
    G. Bremond, M. Serpentini, A. Souifi, G. Guillot, B. Jacquier, M. Abdallah, I. Berbezier, and B. Joyce, Microelectron. J. 30, 357 (1999).CrossRefGoogle Scholar
  52. 52.
    W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, Appl. Phys. Lett. 83, 2958 (2003).ADSCrossRefGoogle Scholar
  53. 53.
    D. N. Lobanov, A. V. Novikov, K. E. Kudryavtsev, D. V. Shengurov, Yu. N. Drozdov, A. N. Yablonskii, V. B. Shmagin, Z. F. Krasil’nik, N. D. Zakharov, and P. Werner, Semiconductors 43, 313 (2009).ADSCrossRefGoogle Scholar
  54. 54.
    L. V. Asryan and S. Luryi, Solid State Electron. 47, 205 (2003).ADSCrossRefGoogle Scholar
  55. 55.
    D.-S. Han, and L. V. Asryan, Appl. Phys. Lett. 92, 251113 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. G. Talalaev
    • 1
    • 4
  • A. A. Tonkikh
    • 1
  • N. D. Zakharov
    • 1
  • A. V. Senichev
    • 1
    • 3
  • J. W. Tomm
    • 2
  • P. Werner
    • 1
  • B. V. Novikov
    • 3
  • L. V. Asryan
    • 6
  • B. Fuhrmann
    • 5
  • J. Schilling
    • 4
    • 5
  • H. S. Leipner
    • 4
    • 5
  • A. D. Bouraulev
    • 7
    • 8
  • Yu. B. Samsonenko
    • 7
    • 9
  • A. I. Khrebtov
    • 7
  • I. P. Soshnikov
    • 7
    • 8
  • G. E. Cirlin
    • 7
    • 9
  1. 1.Max-Planck-Institut für MikrostrukturphysikHalle (Saale)Germany
  2. 2.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlinGermany
  3. 3.Fock Institute of PhysicsSt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia
  4. 4.Martin-Luther-Universität Halle-WittenbergHalleGermany
  5. 5.Martin-Luther-Universität, IZMHalleGermany
  6. 6.Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  7. 7.Russian Academy of SciencesSt. Petersburg Academic University, Nanotechnology Research and Education CentreSt. PetersburgRussia
  8. 8.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  9. 9.Institute for Analytical InstrumentationRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations