Semiconductors

, Volume 46, Issue 11, pp 1437–1442 | Cite as

Investigation of the structure of the ground state of lithium donor centers in silicon enriched in 28Si isotope and the influence of internal strain in the crystal on this structure

  • A. A. Ezhevskii
  • S. A. Popkov
  • A. V. Soukhorukov
  • D. V. Guseinov
  • N. V. Abrosimov
  • H. Riemann
XVI Symposium “Nanophysics and Nanoelectronics”, Nizhni Novgorod, March 12–16, 2012

Abstract

A study of silicon enriched in the 28Si isotope with a low oxygen content (N ≈ 2 × 1014 cm−3) at low temperatures (T = 3.8 K) has revealed a set of electron spin resonance (ESR) spectra with anisotropic g factors associated with an isolated Li donor center, whose lines are assigned to triplet and doublet states. The spectra were investigated without and with application of external load to the sample and their g factors were found to be smaller than 2 (g < 2.000), which distinguishes them from the previously obtained spectra. Based on theoretical and experimental estimates made within the spin-Hamiltonian analysis of the spectra, the states of donor electrons of lithium and their g factors are found to depend strongly on internal strains in the crystal and intervalley spin-orbit interactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Aggarwal and A. K. Ramdas, Phys. Rev. 140, A1246 (1965).ADSCrossRefGoogle Scholar
  2. 2.
    R. L. Aggarwal, P. Fisher, V. Mourzine, and A. K. Ramdas, Phys. Rev. 138, A882 (1965).ADSCrossRefGoogle Scholar
  3. 3.
    G. D. Watkins and F. S. Ham, Phys. Rev. B 1, 4071 (1970).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Ezhevskii, A. V. Gusev, A. V. Sukhorukov, and D. V. Guseinov, Physica B 404, 5063 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    V. V. Emtsev, Jr., C. A. J. Ammerlaan, A. A. Ezhevskii, and A. V. Gusev, Physica B 45, 376 (2006).Google Scholar
  6. 6.
    M. R. Rahman, L. S. Vlasenko, E. E. Haller, and K. M. Itoh, Physica B 404, 5060 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    P. Becker, H.-J. Pohl, H. Riemann, and N. Abrosimov, Phys. Status Solidi A 207, 49 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    D. K. Wilson and G. Feher, Phys. Rev. 124, 1068 (1961).ADSCrossRefGoogle Scholar
  9. 9.
    F. S. Ham, Phys. Rev. 124, 1068 (1961).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    A. Abraham and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970; Mir, Moscow, 1973), vol. 2, ch. 21, p. 251.Google Scholar
  11. 11.
    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970; Mir, Moscow, 1973), vol. 1, ch. 1, p. 25.Google Scholar
  12. 12.
    L. M. Roth, Phys. Rev. 118, 1534 (1960).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. A. Ezhevskii
    • 1
  • S. A. Popkov
    • 1
  • A. V. Soukhorukov
    • 1
  • D. V. Guseinov
    • 1
  • N. V. Abrosimov
    • 2
  • H. Riemann
    • 2
  1. 1.Lobachevsky State UniversityNizhni NovgorodRussia
  2. 2.Leibnitz Institute for Crystal GrowthBerlinGermany

Personalised recommendations