Semiconductors

, Volume 46, Issue 11, pp 1415–1417 | Cite as

Intraband photoconductivity induced by interband illumination in InAs/GaAs heterostructures with quantum dots

  • A. V. Antonov
  • V. M. Daniltsev
  • M. N. Drozdov
  • Yu. N. Drozdov
  • L. D. Moldavskaya
  • V. I. Shashkin
XVI Symposium “Nanophysics and Nanoelectronics”, Nizhni Novgorod, March 12–16, 2012

Abstract

The effect of lateral intraband photoconductivity in undoped InAs/GaAs heterostructures with quantum dots (QDs) has been studied, with QD levels populated with carriers by means of interband optical excitation of varied power at different wavelengths. In the absence of interband illumination, no photoconductivity is observed in the mid-IR spectral range. At the same time, additional exposure of the structures to visible or near-IR light gives rise to a strong photoconductivity signal in the mid-IR spectral range (3–5 μm), associated with intraband transitions in QDs. The signal is observed up to a temperature of ∼200 K. Use of interband optical pumping makes the intraband photoconductivity signal stronger, compared with similar structures in which doping serves to populate QD levels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Vines, C. H. Tan, J. P. R. David, R. S. Attaluri, T. E. Van der Velde, and S. Krishna, Proc. SPIE 7113, 71130J (2008).ADSCrossRefGoogle Scholar
  2. 2.
    L. Chu, A. Zrenner, G. Böhm, and G. Abstreiter, Appl. Phys. Lett. 76, 1944 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    D. Pal and E. Towe, J. Vac. Sci. Technol. 23, 1132 (2005).CrossRefGoogle Scholar
  4. 4.
    L. Fu, Q. Li, P. Kuffner, G. Jolley, P. Gareso, H. H. Tan, and C. Jagadish, Appl. Phys. Lett. 93, 013504 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    M. Olszakier, E. Ehrenfreund, E. Cohen, J. Bajaj, and G. J. Sullivan, Phys. Rev. Lett. 6, 2997 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    D. Delacourt, D. Papillon, J. P. Pocholle, J. P. Schnell, and M. Papuchon, Electron. Lett. 26, 277 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    V. Berger, E. Rosencher, N. Vodjdani, and E. Costard, Appl. Phys. Lett. 62, 378 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    S. Sauvage, P. Boucaud, F. H. Julien, J.-M. Gerard, and J.-Y. Marzin, J. Appl. Phys. 82, 3396 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    S. Sauvage, P. Boucaud, J.-M. Gerard, and V. Thierry-Mieg, J. Appl. Phys. 84, 4356 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    P. Martyniuk and A. Rogalski, Bull. Polish Acad. Sci. Tech. Sci. 57, 103 (2009).Google Scholar
  11. 11.
    L. D. Moldavskaya, N. V. Vostokov, D. M. Gaponova, V. M. Danil’tsev, M. N. Drozdov, Yu. N. Drozdov, and V. I. Shashkin, Semiconductors 42, 99 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. V. Antonov
    • 1
  • V. M. Daniltsev
    • 1
  • M. N. Drozdov
    • 1
  • Yu. N. Drozdov
    • 1
  • L. D. Moldavskaya
    • 1
  • V. I. Shashkin
    • 1
  1. 1.Institute for Physics of MicrostructuresRussian Academy of SciencesNizhni NovgorodRussia

Personalised recommendations