Advertisement

Semiconductors

, Volume 46, Issue 9, pp 1126–1134 | Cite as

Velocity-direction dependent transmission coefficient of electron through potential barrier grown on anisotropic semiconductor

  • Chun-Nan Chen
  • Sheng-Hsiung Chang
  • Wei-Long Su
  • Jen-Yi Jen
  • Yiming Li
Spectroscopy, Interaction with Radiation
  • 93 Downloads

Abstract

In contrast to the usual wavevector dependent transition coefficients, the velocity-direction dependent transition coefficients of an incident electron are calculated. Through a potential barrier grown on anisotropic semiconductors, the transition coefficients of an incident electron are calculated in all valleys and incident-directions. In the anisotropic semiconductor, the mathematical expressions of the electron wavevector are also derived in the framework of the incident-angle and incident-energy parameters.

Keywords

Polar Angle Transmission Coefficient Anisotropic Material Incident Electron Conduction Band Valley 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Arora, MOSFET Modeling for VLSI Simulation: Theory and Practice (Workd Scientific, Singapore, 2007).Google Scholar
  2. 2.
    A. B. Bhattacharyya, Compact MOSFET Modeling for VLSI Design (Wiley, Singapore, 2009).CrossRefGoogle Scholar
  3. 3.
    A. Rahman, J. Guo, S. Datta, and M. Lundstrom, IEEE Trans. Electron. Dev. 50, 1853 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    J. H. Rhew and M. S. Lundstrom, J. Appl. Phys. 92, 5196 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    J. Wang and M. Lundstrom, IEEE Trans. Electron. Dev. 50, 1604 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    E. O. Kane, in Semiconductors and Semimetals, Ed. by R. K. Willardson and A. C. Beer (Academic Press, New York, 1966), vol. 1, p. 75.CrossRefGoogle Scholar
  7. 7.
    J. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    J. Luttinger, Phys. Rev. 102, 1030 (1955).ADSCrossRefGoogle Scholar
  9. 9.
    C. N. Chen, Phys. Rev. B 72, 085305 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    S. Datta, Superlatt. Microstruct. 28, 253 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    Z. Ren, R. Venugopal, S. Goasguen, S. Datta, and M. S. Lundstrom, IEEE Trans. Electron. Dev. 50, 1914 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    C. N. Chen, W. L. Su, M. E. Lee, J. Y. Jen, and Yiming Li, Jpn. J. Appl. Phys. pt. 2 50, 060201 (2011).CrossRefGoogle Scholar
  13. 13.
    K. Y. Kim and B. Lee, Phys. Rev. B 58, 6728 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    K. Y. Kim and B. Lee, Superlatt. Microstruct. 24, 389 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    R. A. Abram and M. Jaros, Band Structure Engineering in Semiconductor Microstucture (Plenum Press, New York, 1989).CrossRefGoogle Scholar
  16. 16.
    R. H. Henderson and E. Towe, J. Appl. Phys. 79, 2029 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Kajikawa, J. Appl. Phys. 86, 5663 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    J. H. Park, D. Kuzum, H. Y. Yu, and K. C. Saraswat, IEEE Trans. Electron. Dev. 58, 2394 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    J. Zhuge, A. S. Verhulst, W. G. Vandeberghe, W. Dehaene, R. Huang, Y. Wang, and G. Groeseneken, Semicond. Sci. Technol. 26, 085001 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    J. Appenzeller, J. Knoch, M. T. Bjork, H. Riel, H. Schmid, and W. Riess, IEEE Trans. Electron. Dev. 55, 2827 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    J. Guo and M. S. Lundstrom, IEEE Trans. Electron. Dev. 49, 1897 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    Q. T. Zhao, J. M. Hartmann, and S. Mantl, IEEE Electron. Dev. Lett. 32, 1480 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    C. H. Shih and N. D. Chien, IEEE Electron. Dev. Lett. 32, 1498 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    K. Yamamoto, R. Ueno, T. Yamanaka, K. Hirayama, H. Yang, D. Wang, and H. Nakashima, Appl. Phys. Express 4, 051301 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    N. Taoka, W. Mizubayashi, Y. Morita, S. Migita, H. Ota, and S. Takagi, J. Appl. Phys. 108, 104511 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    C. N. Chen, J. Appl. Phys. 97, 113704 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Chun-Nan Chen
    • 1
  • Sheng-Hsiung Chang
    • 2
  • Wei-Long Su
    • 3
  • Jen-Yi Jen
    • 1
  • Yiming Li
    • 4
  1. 1.Quantum Engineering Laboratory, Department of PhysicsTamkang UniversityTamsui, TaipeiTaiwan
  2. 2.Department of Optoelectronic EngineeringFar-East UniversityHsin-Shih Town, TainanTaiwan
  3. 3.Department of Digital Mulitimedia TechnologyLee-Ming Institute of TechnologyTai-Shan, TaipeiTaiwan
  4. 4.Department of Electrical EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations