, Volume 46, Issue 8, pp 1032–1039 | Cite as

Effect of localized tail states in InGaN on the efficiency droop in GaN light-emitting diodes with increasing current density

  • N. I. Bochkareva
  • V. V. Voronenkov
  • R. I. Gorbunov
  • A. S. Zubrilov
  • P. E. Latyshev
  • Yu. S. Lelikov
  • Yu. T. Rebane
  • A. I. Tsyuk
  • Yu. G. ShreterEmail author
Physics of Semiconductor Devices


The mechanism of the internal quantum efficiency droop in InGaN/GaN structures with multiple quantum wells at current densities of up to 40 A cm−2 in high-power light-emitting diodes is analyzed. It is shown that there exists a correlation between the efficiency droop and the broadening of the high-energy edge of the emission spectrum with increasing current density. It is also demonstrated that the efficiency is a spectrum-dependent quantity and the emission of higher energy photons starts to decrease at higher current densities. The effect of tunneling and thermally activated mechanisms of thermalization of carriers captured into shallow band-tail states in the energy gap of InGaN on the efficiency and the emission spectrum’s shape is considered. Analysis of the results obtained suggests that the efficiency droop occurs at high current densities because of the relative rise in the contribution from nonradiative recombination via defect states as a result of the increasing occupancy of deep band-tail states in InGaN. It is shown that power efficiency close to the theoretical limit can be obtained in the case of low-voltage tunnel injection into localized band-tail states in the InGaN active region.


Quantum Well External Quantum Efficiency Internal Quantum Efficiency Band Tail Tail State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. App. Phys., pt. I 38, 3976 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    P. G. Eliseev, M. Osinski, H. Li, and I. V. Akimova, Appl. Phys. Lett. 75, 3838 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    B. Monemar and B. E. Sernelius, Appl. Phys. Lett. 91, 181103 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    A. Hori, D. Yasunaga, A. Satake, and K. Fujiwara, Appl. Phys. Lett. 79, 3723 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, M. J. Kappers, and C. J. Humphreys, Appl. Phys. Lett. 82, 2755 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    P. Perlin, V. Iota, B. A. Weinstein, P. Wisniewski, T. Suski, P. G. Eliseev, and M. Osinski, Appl. Phys. Lett. 70, 2993 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Narukava, Y. Kavakami, S. Fujita, and S. Nakamura, Phys. Rev. B 59, 10283 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    N. I. Bochkareva, D. V. Tarkhin, Yu. T. Rebane, R. I. Gorbunov, Yu. S. Lelikov, I. A. Martynov, and Yu. G. Shreter, Semiconductors 41, 87 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, Appl. Phys. Lett. 96, 133502 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    Y. H. Cho, T. J. Schmidt, S. Bidnyk, G. H. Gainer, J. J. Song, S. Keller, U. K. Mishra, and S. P. Den Baars, Phys. Rev. B 61, 7571 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    R. F. Street, Phys. Rev. B 23, 861 (1981).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    W. Fuhs, J. Optoelectron. Adv. Mater. 7, 1889 (2005).Google Scholar
  16. 16.
    S. T. Lai and M. V. Klein, Phys. Rev. B 29, 3217 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    M. Oueslati, M. Zouaghi, M. E. Pistol, L. Samuelson, H. G. Grimmeiss, and M. Balkanski, Phys. Rev. B 32, 8220 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    R. W. Martin, P. G. Middleton, E. P. O’Donnel, and W. van der Stricht, Appl. Phys. Lett. 74, 263 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    V. E. Kudryashov, A. N. Turkin, A. E. Yunovich, A. N. Kovalev, and F. I. Manyakhin, Semiconductors 33, 429 (1999).ADSCrossRefGoogle Scholar
  21. 21.
    P. Perlin, M. Osinski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas, and P. Sartori, Appl. Phys. Lett. 69, 1680 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys. Lett. 71, 569 (1997).ADSCrossRefGoogle Scholar
  23. 23.
    S. F. Chichibu, H. Marchand, M. S. Minsky, S. Keller, P. T. Fini, J. P. Ibbetson, S. B. Fleischer, J. S. Speck, J. E. Bowers, E. Hu, U. K. Mishra, S. P. DenBaars, T. Deguchi, T. Sota, and S. Nakamura, Appl. Phys. Lett. 74, 1460 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    Y. Narukava, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, Phys. Rev. B 55, R1938 (1997).ADSCrossRefGoogle Scholar
  25. 25.
    C. Gourdon and P. Lavallard, Phys. Status Solidi B 153, 641 (1989).ADSCrossRefGoogle Scholar
  26. 26.
    Don Monroe, Phys. Rev. Lett. 54, 146 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, J. Phys. D: Appl. Phys. 43, 354002 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. I. Bochkareva
    • 1
  • V. V. Voronenkov
    • 2
  • R. I. Gorbunov
    • 1
  • A. S. Zubrilov
    • 1
  • P. E. Latyshev
    • 3
  • Yu. S. Lelikov
    • 1
  • Yu. T. Rebane
    • 1
  • A. I. Tsyuk
    • 1
  • Yu. G. Shreter
    • 1
    Email author
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia
  3. 3.Fock Institute of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations