, Volume 46, Issue 4, pp 519–527 | Cite as

Operation of a semiconductor opening switch at ultrahigh current densities

  • S. K. Lyubutin
  • S. N. Rukin
  • B. G. Slovikovsky
  • S. N. Tsyranov
Physics of Semiconductor Devices


The operation of a semiconductor opening switch (SOS diode) at cutoff current densities of tens of kA/cm2 is studied. In experiments, the maximum reverse current density reached 43 kA/cm2 for ∼40 ns. Experimental data on SOS diodes with a p +-p-n-n + structure and a p-n junction depth from 145 to 180 μm are presented. The dynamics of electron-hole plasma in the diode at pumping and current cutoff stages is studied by numerical simulation methods. It is shown that current cutoff is associated with the formation of an electric field region in a thin (∼45 μm) layer of the structure’s heavily doped p-region, in which the acceptor concentration exceeds 1016 cm−3, and the current cutoff process depends weakly on the p-n junction depth.


Type Region Auger Recombination Diode Structure Junction Depth High Field Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. N. Rukin, Instrum. Exp. Tech. 42, 439 (1999).Google Scholar
  2. 2.
    I. V. Grekhov and G. A. Mesyats, Phys. Usp. 48, 703 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    S. A. Darznek, G. A. Mesyats, and S. N. Rukin, Tech. Phys. 42, 1170 (1997).CrossRefGoogle Scholar
  4. 4.
    S. A. Darznek, S. N. Rukin, and S. N. Tsyranov, Tech. Phys. 45, 436 (2000).CrossRefGoogle Scholar
  5. 5.
    S. N. Rukin and S. N. Tsyranov, Tech. Phys. Lett. 30, 19 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    I. V. Grekhov and A. S. Kyuregyan, Tech. Phys. 50, 904 (2005).CrossRefGoogle Scholar
  7. 7.
    S. N. Rukin and S. N. Tsyranov, Semiconductors 43, 957 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, Vienna, 1984), ch. 4, p. 80.CrossRefGoogle Scholar
  9. 9.
    R. Ghosh and S. K. Roy, Solid State Electron. 18, 945 (1975).ADSCrossRefGoogle Scholar
  10. 10.
    M. E. Law, E. Solley, M. Liang, and D. Burk, IEEE Electron. Dev. Lett. 12, 401 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    D. L. Scharfetter and H. K. Gummel, IEEE Trans. Electron. Dev. 16, 64 (1969).CrossRefGoogle Scholar
  12. 12.
    H. Benda and E. Spenke, Proc. IEEE 55, 1331 (1967).CrossRefGoogle Scholar
  13. 13.
    T. T. Mnatsakanov, I. L. Rostovtsev, and N. I. Philatov, Solid State Electron. 30, 579 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. K. Lyubutin
    • 1
  • S. N. Rukin
    • 1
  • B. G. Slovikovsky
    • 1
  • S. N. Tsyranov
    • 1
    • 2
  1. 1.Institute of Electrophysics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations