Advertisement

Semiconductors

, Volume 46, Issue 3, pp 410–413 | Cite as

Pulsed laser deposition of ITO thin films and their characteristics

  • D. A. ZuevEmail author
  • A. A. Lotin
  • O. A. Novodvorsky
  • F. V. Lebedev
  • O. D. Khramova
  • I. A. Petuhov
  • Ph. N. Putilin
  • A. N. Shatohin
  • M. N. Rumyanzeva
  • A. M. Gaskov
Fabrication, Treatment, and Testing of Materials and Structures

Abstract

The indium tin oxide (ITO) thin films are grown on quartz glass substrates by the pulsed laser deposition method. The structural, electrical, and optical properties of ITO films are studied as a function of the substrate temperature, the oxygen pressure in the vacuum chamber, and the Sn concentration in the target. The transmittance of grown ITO films in the visible spectral region exceeds 85%. The minimum value of resistivity 1.79 × 10−4 Ω cm has been achieved in the ITO films with content of Sn 5 at %.

Keywords

Substrate Temperature Thin Solid Film Pulse Laser Deposition Visible Spectral Region Pulse Laser Deposition Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. H. Kim, N. Park, T. Y. Kim, and G. Y. Sung, Thin Solid Films 475, 262 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    C. Viespe, I. Nicolae, C. Sima, C. Grigoriu, and R. Medianu, Thin Solid Films 515, 8771 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    T. Maruyama and K. Fukui, Thin Solid Films 201, 297 (1991).CrossRefGoogle Scholar
  4. 4.
    A. Suzuki and K. Maki, Chem. Vapor Deposit. 12, 608 (2006).CrossRefGoogle Scholar
  5. 5.
    A. A. Karim, C. Deshpandey, H. J. Doerr, and R. F. Bynshah, Thin Solid Films 172, 111 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    C. May and J. Strümpfel, Thin Solid Films 351, 48 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    F. El Akkad, A. Punnoose, and G. Prabu, Appl. Phys. A 71, 157 (2000).ADSGoogle Scholar
  8. 8.
    R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, J. Appl. Phys. 83, 2139 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    M. Ritala, T. Asikainen, and H. Leskela, Electrochem. Solid State Lett. 1, 156 (1998).CrossRefGoogle Scholar
  10. 10.
    H. Kim, J. S. Horwitz, A. Pique, C. M. Gilmore, and D. B. Chrisey, Appl. Phys. A 69, 447 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    H. Kim, J. S. Horwitz, G. P. Kushto, Z. H. Kafafi, and D. B. Chrisey, Appl. Phys. Lett. 79, 284 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    J. H. Shin, S. H. Shin, J. I. Park, and H. H. Kim, J. Appl. Phys. 89, 5199 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    H. Izumi, T. Ishihara, H. Yoshioka, and M. Motoyama, Thin Solid Films 411, 32 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    P. F. Carcia, R. S. Mc Lean, M. H. Reily, Z. G. Li, L. J. Pillone, and R. F. Messier, Appl. Phys. Lett. 81, 1800 (2002).Google Scholar
  15. 15.
    K. A. Sierros, D. R. Cairns, J. S. Abell, and S. N. Kukureka, Thin Solid Films 518, 2623 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    D. Kim and S. Kim, Surf. Coat. Technol. 176, 23 (2003).CrossRefGoogle Scholar
  17. 17.
    O. A. Novodvorskii, A. A. Lotin, V. Ya. Panchenko, L. S. Parshina, E. V. Khaidukov, D. A. Zuev, and O. D. Khramova, Quantum Electron. 41, 4 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    O. A. Novodvorskii, L. S. Gorbatenko, V. Ya. Panchenko, O. D. Khramova, E. A. Cherebylo, K. Ventsel’, I. V. Barta, V. T. Bublik, and K. D. Shcherbachev, Semiconductors 43, 419 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    E. Holmelund, J. Schou, B. Thestrup, S. Tougaard, E. Johnson, and M. M. Nielsen, Appl. Phys. A 79, 1137 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    T. K. Yong, T. Y. Tou, and B. S. Teo, Appl. Surf. Sci. 248, 388 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    A. Suzuki, T. Matsushita, T. Aoki, A. Mori, and M. Okuda, Thin Solid Films 411, 23 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    R. K. Gupta, K. Ghosh, S. R. Mishra, and P. K. Kahol, Mater. Lett. 62, 1033 (2008).CrossRefGoogle Scholar
  23. 23.
    F. O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, K. Yamada, H. Matsui, and M. Motoyama, Thin Solid Films 350, 79 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994).Google Scholar
  25. 25.
    M. Mizuhashi, Thin Solid Films 70, 91 (1980).ADSCrossRefGoogle Scholar
  26. 26.
    R. Eason, Pulsed Laser Deposition of Thin Films: Applicatians-Led Growth of Functional Materials (Wiley, New York, 2006).CrossRefGoogle Scholar
  27. 27.
    M. Aven and J. Prener, Physics and Chemistry of II–VI Compounds (North-Holland, Amsterdam, 1970).Google Scholar
  28. 28.
    D. S. Ginley, H. Hosono, and D. C. Paine, Handbook of Transparent Conductors (Springer Science + Business Media, New York, 2010).CrossRefGoogle Scholar
  29. 29.
    I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, and L. Engström, Phys. Rev. B 30, 3240 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • D. A. Zuev
    • 1
    Email author
  • A. A. Lotin
    • 1
  • O. A. Novodvorsky
    • 1
  • F. V. Lebedev
    • 1
  • O. D. Khramova
    • 1
  • I. A. Petuhov
    • 2
  • Ph. N. Putilin
    • 2
  • A. N. Shatohin
    • 2
  • M. N. Rumyanzeva
    • 2
  • A. M. Gaskov
    • 2
  1. 1.Institute on Laser and Information TechnologiesRussian Academy of SciencesShatura, Moscow oblastRussia
  2. 2.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations