Advertisement

Semiconductors

, 45:1281 | Cite as

The effect of Sn impurity on the optical and structural properties of thin silicon films

  • V. V. VoitovychEmail author
  • V. B. Neimash
  • N. N. Krasko
  • A. G. Kolosiuk
  • V. Yu. Povarchuk
  • R. M. Rudenko
  • V. A. Makara
  • R. V. Petrunya
  • V. O. Juhimchuk
  • V. V. Strelchuk
Surfaces, Interfaces, and Thin Films

Abstract

The effect of tin impurity on the structure and optical properties of thin-film amorphous silicon is investigated. It is established that tin impurity accelerates crystallization of amorphous silicon. Immediately after deposition of a film onto a substrate at a temperature of ∼300°C, there is a crystalline phase of silicon in samples with tin. High-vacuum annealing at 350–750°C leads to growth of the crystalline phase in films with tin: nanocrystals grow in size from ∼3.0 to 4.5 nm. At the same time, in films without tin, only the degree of the short-range order increases. Silicon film without tin remains amorphous over the entire range of annealing temperatures.

Keywords

Raman Spectrum Amorphous Silicon Silicon Film Silicon Nanocrystals Thin Film Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Shan, E. Vallat-Shauvain, P. Torres, J. Meier, U. Kroll, C. Hof, C. Droz, M. Goerlitzer, N. Wyrsch, and M. Vanechek, Mater. Sci. Eng. 69–70, 219 (2000).Google Scholar
  2. 2.
    A. V. Vasin, A. V. Rusavskii, V. S. Lysenko, A. N. Nazarov, V. I. Kushnirenko, S. P. Starik, and V. G. Stepanov, Semiconductors 39, 572 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    A. V. Ershov, A. I. Mashin, A. F. Khokhlov, D. E. Kas’yanov, A. V. Nezhdanov, N. I. Mashin, and I. A. Karabanova, in Proceedings of the 1st Workshop on NATO SfP-973799 Project Semiconductors (Nizh. Novgorod, 2001), p. 124.Google Scholar
  4. 4.
    V. E. Kustov, M. G. Mil’vidskii, Yu. G. Semenov, B.M. Turovskii, V. I. Shakhovtsov, and V. L. Shindich, Sov. Phys. Semicond. 20, 169 (1986).Google Scholar
  5. 5.
    V. M. Babich, N. I. Bletskan, and E. F. Venger, Oxygen in Silicon Monocrystals (Interpres LTD, Kiev, 1997), p. 240 [in Russian].Google Scholar
  6. 6.
    K. L. Brower, Phys. Rev. B 9, 2607 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    A. Mesli and A. Nylandsted Larsen, Phys. Rev. Lett. 83, 148 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    C. V. Budtz-Jorgensen, P. Kringhoj, A. Nylandsted Larsen, and N. V. Abrosimov, Phys. Rev. B 58, 1110 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    G. D. Watkins, Phys. Rev. B 12, 4383 (1975).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    V. B. Neimash, A. Kraitchinskii, M. Kras’ko, O. Puzenko, C. Claeys, E. Simoen, B. Svensson, and A. Kuznetsov, J. Electrochem. Soc. 147, 2727 (2000).CrossRefGoogle Scholar
  11. 11.
    V. B. Neimash, A. M. Kraitchinskii, M. M. Krasko, O. O. Pusenko, E. Simoen, C. Claeys, A. Blondeel, and P. Clauws, Ukr. J. Phys. 45, 1121 (2000).Google Scholar
  12. 12.
    M. M. Kras’ko, V. V. Voitovych, V. B. Niemash, and A. M. Kraitchinskii, Ukr. J. Phys. 49, 691 (2004).Google Scholar
  13. 13.
    V. B. Neimash, V. V. Voitovich, M. M. Kras’ko, A. M. Kraitchinskii, O. M. Kabaldin, Yu. V. Pavlovskyi, and V. M. Tsmots’, Ukr. J. Phys. 50, 1273 (2005).Google Scholar
  14. 14.
    V. B. Neimash, V. V. Voitovich, A. M. Kraitchinskii, L. I. Spinar, M. M. Kras’ko, V. M. Popov, A. P. Pokanevych, M. I. Gorodis’kyi, Yu. V. Pavlovskyi, V. M. Tsmots, and O. M. Kabaldin, Ukr. J. Phys. 50, 492 (2005).Google Scholar
  15. 15.
    A. G. Kazanskii, E. I. Terukov, P. A. Forsh, and J. P. Kleider, Semiconductors 44, 494 (2010).CrossRefGoogle Scholar
  16. 16.
    A. G. Kazanskii, O. G. Koshelev, A. Yu. Sazonov, and A. A. Khomich, Semiconductors 42, 192 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    A. A. Sirenko, J. R. Fox, L. A. Akimov, X. X. Xi, S. Ruvimov, and Z. Liliental-Weber, Solid State Commun. 113, 553 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    A. P. Sokolov and A. P. Shebanin, Sov. Phys. Semicond. 24, 720 (1990).Google Scholar
  19. 19.
    G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981).ADSCrossRefGoogle Scholar
  20. 20.
    P. Mishra and K. P. Jain, Phys. Rev. B 64, 073304 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    A. Morimoto, T. Kataoka, and T. Shimizu, Jpn. J. Appl. Phys. 23, L812 (1984).ADSCrossRefGoogle Scholar
  22. 22.
    S. Y. Shiryaev, J. L. Hansen, P. Kringhoj, and A. N. Larsen, Appl. Phys. Lett. 67, 2287 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    H. Richter, Z. P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    H. Cambell and P. M. Fauchet, Solid State Commun. 58, 739 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. V. Voitovych
    • 1
    Email author
  • V. B. Neimash
    • 1
  • N. N. Krasko
    • 1
  • A. G. Kolosiuk
    • 1
  • V. Yu. Povarchuk
    • 1
  • R. M. Rudenko
    • 2
  • V. A. Makara
    • 2
  • R. V. Petrunya
    • 2
  • V. O. Juhimchuk
    • 3
  • V. V. Strelchuk
    • 3
  1. 1.Institute of PhysicsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Department of PhysicsKyiv National UniversityKyivUkraine
  3. 3.Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations