Advertisement

Semiconductors

, 45:1111 | Cite as

Investigation of energy levels of Er-impurity centers in Si by the method of ballistic electron emission spectroscopy

  • D. O. Filatov
  • I. A. Zimovets
  • M. A. Isakov
  • V. P. Kuznetsov
  • A. V. Kornaukhov
Electronic Properties of Semiconductors

Abstract

The method of ballistic electron emission spectroscopy is used for the first time to study the energy spectrum of Er-impurity complexes in Si. The features are observed in the ballistic electron spectra of mesa diodes based on p +-n + Si structures with a thin (∼30 nm) p +-Si:Er surface layer in the region of ballistic-electron energies eV t lower than the conduction-band-edge energy E c in this layer. They are associated with the tunnel injection of ballistic electrons from the probe of the scanning tunnel microscope to the deep donor levels of the Er-impurity complexes in the p +-Si:Er layer with subsequent thermal excitation into the conduction band and the diffusion to the p +-n + junction and the direct tunneling in it. To verify this assumption, the ballistic-electron transport was simulated in the system of the Pt probe, native-oxide layer SiO2-p +-Si:Er-n +, and Si substrate. By approximating the experimental ballistic-electron spectra with the modeling spectra, the ground-state energy of the Er complex in Si was determined: E d E c − 0.27 eV. The indicated value is consistent with the data published previously and obtained from the measurements of the temperature dependence of the free-carrier concentration in Si:Er layers.

Keywords

Scanning Probe Microscope Ballistic Electron Deep Center Deep Donor Level Band Edge Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. T. Reed, Silicon Photonics: The State of the Art (Wiley Intersci., New York, 2008).CrossRefGoogle Scholar
  2. 2.
    L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, New York, 2004).Google Scholar
  3. 3.
    A. J. Kenyon, Semicond. Sci. Technol. 20, R65 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    L. Khriachtchev, Silicon Nanophotonics: Basic Principles, Present Status and Perspectives (Pan Stanford, 2008).Google Scholar
  5. 5.
    V. P. Kuznetsov, D. Yu. Remizov, V. B. Shmagin, K. E. Kudryavtsev, V. N. Shabanov, S. V. Obolenskii, O.V. Belova, M. V. Kuznetsov, A. V. Kornaukhov, B. A. Andreev, and Z. F. Krasil’nik, Semiconductors 41, 1312 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    M. V. Stepikhova, D. M. Zhigunov, V. G. Shengurov, V. Yu. Timoshenko, L. V. Krasil’nikova, V. Yu. Chalkov, S. P. Svetlov, O. A. Shalygina, P. K. Kashkarov, and Z. F. Krasil’nik, JETP Lett. 81, 494 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    A. N. Yablonskii, B. A. Andreev, L. V. Krasil’nikova, D. I. Kryzhkov, V. P. Kuznetsov, and Z. F. Krasil’nik, Semiconductors 44, 1472 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    O. V. Belova, V. N. Shabanov, A. P. Kasatkin, O. A. Kuznetsov, A. N. Yablonskii, M. V. Kuznetsov, V. P. Kuznetsov, A. V. Kornaukhov, B. A. Andreev, and Z. F. Krasil’nik, Semiconductors 42, 137 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    V. Narayanamurti and M. Kozhevnikov, Phys. Rep. 349, 447 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    V. P. Kuznetsov and Z. F. Krasil’nik, Semiconductors 44, 396 (2010).CrossRefGoogle Scholar
  11. 11.
    M. Prietsch, Phys. Rep. 253, 163 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    M. A. Lapshina, M. A. Isakov, D. O. Filatov, S. V. Tikhov, Yu. A. Matveev, and A. V. Zenkevich, J. Surf. Invest. 4, 411 (2010).CrossRefGoogle Scholar
  13. 13.
    V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1990) [in Russian].Google Scholar
  14. 14.
    Physical Properties of Semiconductors. New Semiconductor Materials Database. Characteristics and Properties. Electronic archive. http://www.matprop.ru/Semicond/Si.html.
  15. 15.
    D. L. Smith, M. Kozhevnikov, E. Y. Lee, and V. Narayanamurti, Phys. Rev. B 61, 13914 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    L. Esaki and P. J. Stiles, Phys. Rev. Lett. 16, 1108 (1966).ADSCrossRefGoogle Scholar
  17. 17.
    J. A. Kubby and J. J. Boland, Surf. Sci. R 26, 61 (1996).CrossRefGoogle Scholar
  18. 18.
    M. S. Tyagi and R. van Overstraeten, Solid State Electron. 26, 577 (1983).ADSCrossRefGoogle Scholar
  19. 19.
    V. P. Kuznetsov, D. Yu. Remizov, V. N. Shabanov, R. A. Rubtsova, M. V. Stepikhova, D. I. Kryzhkov, A.N. Shushunov, O. V. Belova, Z. F. Krasil’nik, and G. A. Maksimov, Semiconductors 40, 846 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    O. V. Belova, V. N. Shabanov, A. P. Kasatkin, O. A. Kuznetsov, A. N. Yablonskii, M. V. Kuznetsov, V. P. Kuznetsov, A. V. Kornaukhov, B. A. Andreev, and Z. F. Krasil’nik, Semiconductors 42, 137 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    Tables of Physical Quantities. A Manual, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].Google Scholar
  22. 22.
    L. Quattropani, I. Maggio-Aprile, P. Niedermann, and Ø. Fischer, Phys. Rev. B 57, 6623 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    R. Ludeke, E. Cartier, and A. Schenk, Appl. Phys. Lett. 75, 1407 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • D. O. Filatov
    • 1
  • I. A. Zimovets
    • 2
  • M. A. Isakov
    • 1
  • V. P. Kuznetsov
  • A. V. Kornaukhov
  1. 1.Research Institute for Physics and TechnologyLobachevskii State UniversityNizhni NovgorodRussia
  2. 2.Lobachevskii State UniversityNizhni NovgorodRussia

Personalised recommendations