Advertisement

Semiconductors

, Volume 45, Issue 5, pp 668–672 | Cite as

High-voltage (3.3 kV) 4H-SiC JBS diodes

  • P. A. Ivanov
  • I. V. Grekhov
  • N. D. Il’inskaya
  • O. I. Kon’kov
  • A. S. Potapov
  • T. P. Samsonova
  • O. U. Serebrennikova
Physics of Semiconductor Devices

Abstract

High-voltage 4H-SiC junction-barrier Schottky (JBS) diodes have been fabricated and studied. The working area of the diodes (anode contact area) is 1.44 mm2. At currents in the range from 10−11 to 1.5 A, the forward current-voltage characteristic of the diodes is described in terms of the thermionic emission model, with the series resistance taken into account: Schottky barrier height ΦB = 1.16 eV, ideality factor n = 1.01, and series resistance R s = 2.2 Ω (32 mΩ cm2). The value of R s is governed by the resistance of the blocking epitaxial n-base (impurity concentration N = 9 × 1014 cm−3, n-layer thickness d = 34 μm). The diodes can block a reverse voltage of at least 3.3 kV (with a leakage current at room temperature on the order of 1 μA). It is suggested that the leakage mechanism is associated with crystal lattice defects (dislocations) in SiC. It is shown that the reverse-recovery characteristics of the diodes are determined by the flow of a purely capacitive reverse current.

Keywords

Versus Characteristic Schottky Barrier Height Type Layer Reverse Voltage Leakage Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Slabukhin, Komponent. Tekhnol., No. 2, 114 (2005).Google Scholar
  2. 2.
    A. Polishchuk, Silov. Elektron. No. 1, 34 (2006).Google Scholar
  3. 3.
  4. 4.
    I. V. Grekhov, P. A. Ivanov, N. D. Il’inskaya, O. I. Kon’kov, A. S. Potapov, and T. P. Samsonova, Fiz. Tekh. Poluprovodn. 42, 211 (2008) [Semiconductors 42, 211 (2008)].Google Scholar
  5. 5.
    P. A. Ivanov, I. V. Grekhov, N. D. Il’inskaya, T. P. Samsonova, and A. S. Potapov, Fiz. Tekh. Poluprovodn. 43, 527 (2009) [Semiconductors 43, 505 (2009)].Google Scholar
  6. 6.
    P. A. Ivanov, I. V. Grekhov, A. S. Potapov, N. D. Il’inskaya, T. P. Samsonova, and O. I. Kon’kov, Fiz. Tekh. Poluprovodn. 43, 1249 (2009) [Semiconductors 43, 1209 (2009)].Google Scholar
  7. 7.
    I. V. Grekhov, P. A. Ivanov, A. S. Potapov, T. P. Samsonova, O. I. Kon’kov, and N. D. Il’inskaya, Patent RF No. 2390880 (Priority from May 25, 2009).Google Scholar
  8. 8.
    I. V. Grekhov, P. A. Ivanov, A. S. Potapov, T. P. Samsonova, O. I. Kon’kov, and N. D. Il’inskaya, Patent RF No. 2395868 (Priority from June 5, 2009).Google Scholar
  9. 9.
    G. Pensl, F. Ciobanu, and T. Frank, Int. J. High. Speed Electron. Syst. 15, 705 (2005).CrossRefGoogle Scholar
  10. 10.
    P. A. Ivanov, I. V. Grekhov, A. S. Potapov, T. P. Samsonova, N. D. Il’inskaya, O. I. Kon’kov, and O. Yu. Serebrennikova, Fiz. Tekh. Poluprovodn. 44, 680 (2010) [Semiconductors 44, 653 (2010)].Google Scholar
  11. 11.
    Q. Wahab, A. Ellison, A. Henry, E. Janzen, C. Hallin, J. Di Persio, and R. Martinez, Appl. Phys. Lett. 76, 2725 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    B. Hull, J. Sumakeris, M. O’Loughlin, J. Zhang, J. Richmond, A. Powell, M. Paisley, V. Tsvetkov, A. Hefner, and A. Rivera, Mater. Sci. Forum 600–603, 931 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • P. A. Ivanov
    • 1
  • I. V. Grekhov
    • 1
  • N. D. Il’inskaya
    • 1
  • O. I. Kon’kov
    • 1
  • A. S. Potapov
    • 1
  • T. P. Samsonova
    • 1
  • O. U. Serebrennikova
    • 1
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations