Advertisement

Semiconductors

, Volume 45, Issue 3, pp 320–324 | Cite as

Photoreflectance spectroscopy of electron-hole states in a graded-width GaAs/InGaAs/GaAs quantum well

  • L. P. Avakyants
  • P. Yu. BokovEmail author
  • E. V. Glazyrin
  • I. P. Kazakov
  • A. V. Chervyakov
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • 68 Downloads

Abstract

The spectrum of electron-hole states in a GaAs/In0.5Ga0.5As quantum well with a width graded in the range from 1.1 to 3.6 nm is studied by photoreflectance spectroscopy. The energies of the size-quantization levels of electrons and holes are calculated taking into account the strain-induced changes in the band structures of the quantum well. It is shown that the best fit of the experimental data to the results of calculations is attained if the ratio between the offset of the conduction band and that of the valence band at the heterojunction is Q = ΔE c E v = 0.62/0.38. A photoreflectance signal is detected in the region of the shadow of modulating radiation beam at a spacing between the spots produced by probing and modulating radiation shorter than 6 mm.

Keywords

GaAs Quantum Well GaAs Barrier Quantum Well Width Size Quantization Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. V. Khabarov, V. V. Kapaev, V. A. Petrov, and G. B. Galiev, Fiz. Tekh. Poluprovodn. 40, 572 (2006) [Semiconductors 40, 558 (2006)].Google Scholar
  2. 2.
    B. N. Zvonkov, E. R. Lin’kova, I. G. Malkina, D. O. Filatov, and A. L. Chernov, Pis’ma Zh. Eksp. Teor. Fiz. 63, 418 (1996) [JETP Lett. 63, 439 (1996)].Google Scholar
  3. 3.
    J. M. Gerard, J. B. Genin, J. Lefebvre, J. M. Moison, N. Lebouche, and F. Barthe, J. Cryst. Growth 150, 351 (1995).CrossRefADSGoogle Scholar
  4. 4.
    J. M. Moison, F. Houzay, F. Barthe, J. Leprince, E. Andre, and O. Vatel, Appl. Phys. Lett. 64, 196 (1994).CrossRefADSGoogle Scholar
  5. 5.
    M. Grassi Alessi, M. Capizzi, A. S. Bhatti, A. Frova, F. Martelli, P. Frigeri, A. Bosacchi, and S. Franchi, Phys. Rev. B 59, 7620 (1999).CrossRefADSGoogle Scholar
  6. 6.
    M. Sydor, J. R. Engholm, M. O. Manasreh, K. R. Evans, C. E. Stutz, and W. C. Mitchel, Phys. Rev. B 45, 13796 (1992).CrossRefADSGoogle Scholar
  7. 7.
    M. A. Chernikov, A. E. Sotnikov, O. A. Ryabushkin, P. Trubenko, I. Berishchev, and A. Ovchinnikov, Kvant. Elektron. 34, 875 (2004) [Quantum Electron. 34, 875 (2004)].CrossRefADSGoogle Scholar
  8. 8.
    S. V. Polyakov and V. A. Sablikov, Mat. Model. 9, 76 (1997).zbMATHGoogle Scholar
  9. 9.
    L. P. Avakyants, P. Yu. Bokov, and A. V. Chervyakov, Zh. Tekh. Fiz. 75, 66 (2005) [Tech. Phys. 50, 1316 (2005)].Google Scholar
  10. 10.
    D. E. Aspnes, Surf. Sci. 37, 418 (1973).CrossRefADSGoogle Scholar
  11. 11.
    D. E. Aspnes, Phys. Rev. B 10, 4228 (1974).CrossRefADSGoogle Scholar
  12. 12.
    P. Yu and M. Cardona, Fundamenals of Semiconductors: Physics and Material Properties (Springer, Berlin, 2002; Fizmatlit, Moscow, 2002).Google Scholar
  13. 13.
    X. Zhang, K. Onabe, Y. Nitta, B. Zhang, S. Fukatsu, Y. Shraki, and R. Ito, Jpn. J. Appl. Phys. 30, L1631 (1991).CrossRefADSGoogle Scholar
  14. 14.
    J. M. Gerard and J. Y. Marzin, Phys. Rev. B 45, 2414 (1992).CrossRefGoogle Scholar
  15. 15.
    D. Gershoni, H. Temkin, M. B. Panish, and R. A. Hamm, Phys. Rev. B 39, 5531 (1988).CrossRefADSGoogle Scholar
  16. 16.
    J. S. Tsang, C. P. Lee, S. H. Lee, K. L. Tsai, C. M. Tsai, and J. C. Fan, J. Appl. Phys. 79, 664 (1996).CrossRefADSGoogle Scholar
  17. 17.
    B. V. Novikov, G. G. Zegrya, R. M. Peleshchak, O. O. Dan’kiv, V. A. Gaisin, V. G. Talalaev, I. V. Shtorm, and G. E. Tsyrlin, Fiz. Tekh. Poluprovodn. 42, 1094 (2008) [Semiconductors 42, 1076 (2008)].Google Scholar
  18. 18.
    G. B. Galiev, V. E. Kaminskii, V. G. Mokerov, L. P. Ava- kyants, P. Yu. Bokov, A. V. Chervyakov, and V. A. Kul’bachinskii, Fiz. Tekh. Poluprovodn. 37, 77 (2003) [Semiconductors 37, 77 (2003)].Google Scholar
  19. 19.
    G. Sek, J. Andrzejewski, K. Ryczko, P. Poloczek, J. Misiewicz, E. S. Semenova, A. Lemaitre, G. Patriarche, and A. Ramdane, Semicond. Sci. Technol. 24, 085011 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • L. P. Avakyants
    • 1
  • P. Yu. Bokov
    • 1
    Email author
  • E. V. Glazyrin
    • 2
  • I. P. Kazakov
    • 2
  • A. V. Chervyakov
    • 1
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations