Advertisement

Semiconductors

, Volume 44, Issue 8, pp 1050–1058 | Cite as

InGaAs tunnel-injection structures with nanobridges: Excitation transfer and luminescence kinetics

  • V. G. Talalaev
  • A. V. Senichev
  • B. V. Novikov
  • J. W. Tomm
  • T. Elsaesser
  • N. D. Zakharov
  • P. Werner
  • U. Gösele
  • Yu. B. Samsonenko
  • G. E. Cirlin
Amorphous, Vitreous, Porous, Organic, and Microcrystalline Semiconductors; Semiconductor Composites

Abstract

Methods of optical spectroscopy and electron microscopy have been used to study tunnel-injection nanostructures the active region of which consisted of an upper In0.15Ga0.85 As quantum-well layer and a lower layer of In0.6Ga0.4As quantum dots as a light emitter; both layers were separated by a GaAs barrier layer. Deviations from the semiclassical Wentzel-Kramers-Brillouin model are observed in the dependence of the tunneling time on barrier’s thickness. Reduction of the transfer time to several picoseconds at a barrier thickness smaller than 6 nm is accounted for by formation of InGaAs nanobridges between tops of quantum dots and the quantum-well layer; the nanobridges include those with their own hole state. The effect of an electric field induced by tunneling on the carriers’ transfer time in a tunnel-injection nanostructure is taken into account.

Keywords

Quantum Well Barrier Thickness Tunneling Time Thin Barrier Thick Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Mi, P. Bhattacharya, and S. Fathpour, Appl. Phys. Lett. 86, 153109 (2005).CrossRefADSGoogle Scholar
  2. 2.
    V. P. Evtikhiev, O. V. Konstantinov, A. V. Matveentsev, and A. E. Romanov, Fiz. Tekh. Poluprovodn. 36, 79 (2002) [Semiconductors 36, 74 (2002)].Google Scholar
  3. 3.
    G. Sek, P. Poloczek, P. Podemski, R. Kudrawiec, and J. Misiewicz, Appl. Phys. Lett. 90, 081915 (2007).CrossRefADSGoogle Scholar
  4. 4.
    L. F. Register, C. Wanqiang, X. Zheng, and M. Stroscio, Int. J. High Speed Electron. Syst. 12, 239 (2002).CrossRefGoogle Scholar
  5. 5.
    V. G. Talalaev, J. W. Tomm, N. D. Zakharov, P. Werner, U. Gösele, B. V. Novikov, A. S. Sokolov, Yu. B. Samsonenko, V. A. Egorov, and G. E. Cirlin, Appl. Phys. Lett. 93, 031105 (2008).CrossRefADSGoogle Scholar
  6. 6.
    V. G. Talalaev, J. W. Tomm, A. S. Sokolov, I. V. Shtrom, B. V. Novikov, A. Winzer, R. Goldhahn, G. Gobsch, N. D. Zakharov, P. Werner, U. Gösele, G. E. Cirlin, A. A. Tonkikh, V. M. Ustinov, and G. G. Tarasov, J. Appl. Phys. 100, 083704 (2006).CrossRefADSGoogle Scholar
  7. 7.
    Yu. I. Mazur, Zh. M. Wang, G. G. Tarasov, M. Xiao, G. J. Salamo, J. W. Tomm, V. Talalaev, and H. Kissel, Appl. Phys. Lett. 86, 063102 (2005).CrossRefADSGoogle Scholar
  8. 8.
    Ch. S. Kim, A. M. Satanin, and V. B. Shtenberg, Fiz. Tekh. Poluprovodn. 36, 569 (2002) [Semiconductors 36, 539 (2002)].Google Scholar
  9. 9.
    Yu. A. Aleshchenko, I. P. Kazakov, V. V. Kapaev, and Yu. V. Kopaev, Pis’ma Zh. Éksp. Teor. Fiz. 67, 207 (1998) [JETP Lett. 67, 222 (1998)].Google Scholar
  10. 10.
    S. I. Gubarev, I. V. Kukushkin, S. V. Tovstonog, M. Yu. Akimov, I. Smet, K. von Klittsing, and V. Vegshaider, Pis’ma Zh. Éksp. Teor. Fiz. 72, 469 (2000) [JETP Lett. 72, 324 (2000)].Google Scholar
  11. 11.
    L. V. Asryan and S. Luryi, Solid State Electron. 47, 205 (2003).CrossRefADSGoogle Scholar
  12. 12.
    D.-S. Han and L. V. Asryan, Appl. Phys. Lett. 92, 251113 (2008).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. G. Talalaev
    • 1
    • 2
  • A. V. Senichev
    • 1
  • B. V. Novikov
    • 1
  • J. W. Tomm
    • 3
  • T. Elsaesser
    • 3
  • N. D. Zakharov
    • 4
  • P. Werner
    • 4
  • U. Gösele
    • 4
  • Yu. B. Samsonenko
    • 5
    • 6
    • 7
  • G. E. Cirlin
    • 5
    • 6
    • 7
  1. 1.Fock Institute of PhysicsSt. Petersburg State UniversityPetrodvoretsRussia
  2. 2.ZIK SiLi-nanoMartin-Luther-UniversitätHalleGermany
  3. 3.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlinGermany
  4. 4.Max-Planck-Institut für MikrostrukturphysikHalleGermany
  5. 5.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  6. 6.Institute for Analytical InstrumentationRussian Academy of SciencesSt. PetersburgRussia
  7. 7.St. Petersburg Physical Technological Center for Research and EducationRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations