Advertisement

Semiconductors

, Volume 44, Issue 8, pp 1012–1015 | Cite as

Optical properties of thin GaSe/n-Si(111) films

  • M. P. Kisselyuk
  • O. I. Vlasenko
  • P. O. GentsarEmail author
  • M. V. Vuychik
  • M. S. Zayats
  • I. V. Kruglenko
  • O. S. Litvin
  • Ts. A. Kryskov
Semiconductor Structures, Interfaces, and Surfaces
  • 45 Downloads

Abstract

Morphological and optical studies (ellipsometry and reflectance spectroscopy in the ranges 400–750 nm and 1.4–25 μm) of thin GaSe films fabricated by thermal evaporation on the n-Si (111) single-crystal substrates are reported. The film thickness was 15–60 nm. It is established that, in the initial stage of growth, the growth of GaSe on the n-Si (111) substrates occurs via formation of islands (three-dimensional growth). It is shown that, as the thickness increases, the physical parameters of the film change and the films approach single crystals in crystalline and energy band structure. For films with a thickness of 60 nm, the reflectance band peak is attributed to indirect optical transitions enhanced by reflection from the film-substrate interface. From the results of optical studies, quantum effects in the surface region of the thin films are conjectured.

Keywords

Optical Study Substrate Interface Quantum Confinement Effect Energy Band Structure Photovoltaic Converter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Tyagai and O. V. Snitko, Electroreflectance of Light in Semiconductors (Nauchnaya Mysl’, Kiev, 1980) [in Russian].Google Scholar
  2. 2.
    Physicochemical Properties of Semiconductors, A Reference Book (Nauka, Moscow, 1979) [in Russian].Google Scholar
  3. 3.
    Y. Oyama, T. Tanabe, F. Sato, A. Kenmochi, J. Nishizawa, T. Sasaki, and K. Suto, J. Cryst. Growth 310, 1923 (2008).CrossRefADSGoogle Scholar
  4. 4.
    H. F. Jurca, I. Mazzaro, W. H. Schreiner, D. H. Mosca, M. Eddrief, and V. H. Etgens, Thin. Solid Films 515, 1470 (2006).CrossRefADSGoogle Scholar
  5. 5.
    P. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, New York, 1996; Fizmatlit, Moscow, 2002).zbMATHGoogle Scholar
  6. 6.
    V. I. Gavrilenko, A. M. Grekhov, D. V. Korbutyak, and V. G. Litovchenko, Optical Properties of Semiconductors, A Reference Book (Nauchnaya mysl’, Kiev, 1987) [in Russian].Google Scholar
  7. 7.
    P. A. Gentsar’, A. I. Vlasenko, and A. V. Stronskii, Fiz. Khim. Tverd. Tela 8, 48 (2007).Google Scholar
  8. 8.
    S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, Chichester, Brisbane, Toronto, Singapore, 1981; Mir, Moscow, 1984), vol. 1.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. P. Kisselyuk
    • 1
  • O. I. Vlasenko
    • 1
  • P. O. Gentsar
    • 1
    Email author
  • M. V. Vuychik
    • 1
  • M. S. Zayats
    • 1
  • I. V. Kruglenko
    • 1
  • O. S. Litvin
    • 1
  • Ts. A. Kryskov
    • 2
  1. 1.Lashkarev Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Kamenets-Podolskii National UniversityKamenets-PodolskiiUkraine

Personalised recommendations