, Volume 44, Issue 7, pp 867–871 | Cite as

Calculation of the charge-carrier mobility in diamond at low temperatures

  • A. S. Baturin
  • V. N. Gorelkin
  • V. R. Soloviev
  • I. V. ChernousovEmail author
Electrical and Optical Properties of Semiconductors


The discrepancies between the quasi-elastic and inelastic approaches to the calculation of the electron and hole mobilities in diamond at low temperatures when the carrier scattering from acoustic phonons becomes significantly inelastic have been numerically estimated. The calculations showed that the mobility described by a close-to-equilibrium distribution function differs several times from that obtained within the quasi-elastic approach even at 20 K. The results obtained are important for interpreting the low-temperature electrical experiments on high-purity diamond single crystals.


Carrier Energy Acoustic Phonon Light Hole Collision Integral Equilibrium Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Handbook of Industrial Diamonds and Diamond Films, Ed. by M. A. Prelas, G. Popovici, and L. K. Bigelow (Marcel Deccer, New York, 1998), p. 253.Google Scholar
  2. 2.
    M. Nesladek, A. Bogdan, W. Deferme, N. Tranchant, and P. Bergonzo, Diamond Relat. Mater. 17, 1235 (2008).CrossRefGoogle Scholar
  3. 3.
    J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, Science 297, 1670 (2002).CrossRefADSGoogle Scholar
  4. 4.
    H. Pernegger, H. Roe, S. Weilhammer, P. Eremin, V. Frais-Kolbl, H. Griesmayer, E. Kagan, H. Schnetzer, S. Schnetzer, S. Stone, R. Trischuk, W. Twitchen, and D. Whitehead, J. Appl. Phys. 97, 73704 (2005).CrossRefGoogle Scholar
  5. 5.
    M. Pomorski, E. Berdermann, W. De Boer, A. Furgeri, C. Sander, and J. Morse, Diamond Relat. Mater. 16,1066 (2007).CrossRefGoogle Scholar
  6. 6.
    R. S. Sussmann, CVD Diamond for Electronic Devices and Sensors (Wiley Ser. Mater. Electron. Optoelectron. Appl., 2009).Google Scholar
  7. 7.
    A. S. Baturin, V. N. Gorelkin, V. R. Solov’ev, and I. V. Chernousov, Fiz. Plazmy 34, 431 (2008) [Plasma Phys. Rep. 34, 392 (2008)].Google Scholar
  8. 8.
    E. M. Livshitz and L. P. Pitaevskii, Physical Kinetics (Fizmatlit, Moscow, 2002), p. 123 [in Russian].Google Scholar
  9. 9.
    V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977), p. 455 [in Russian].Google Scholar
  10. 10.
    A. S. Baturin, V. N. Gorelkin, V. S. Rastunkov, and V. R. Soloviev, Physica B 374–375, 340 (2006).CrossRefGoogle Scholar
  11. 11.
    A. P. Babichev, N. A. Babushkina, A. M. Bratkobskii, et al., Physical Values, A Reference Book, Ed. by I. S. Grigor’ev and E. Z. Melikhov (Énergoatomizdat, Moscow, 1991) [in Russian], s. 456.Google Scholar
  12. 12.
    B. I. Davydov, Zh. Éksp. Teor. Fiz. 6, 463 (1936).Google Scholar
  13. 13.
    M. J. Druyvesteyn, Physica 10, 61 (1930); Physica 11, 1003 (1934).Google Scholar
  14. 14.
    A. S. Baturin, Yu. M. Belousov, V. N. Gorelkin, V. P. Krainov, and V. S. Rastunkov, Zh. Éksp. Teor. Fiz. 130(6), 1 (2006) [JETP 104, 139 (2007)].Google Scholar
  15. 15.
    M. Lax, Phys. Rev. 119, 1502 (1960).CrossRefADSGoogle Scholar
  16. 16.
    V. N. Abakumov and I. N. Yassievich, Zh. Éksp. Teor. Fiz. 71, 657 (1976) [Sov. Phys. JETP 44, 345 (1976)].ADSGoogle Scholar
  17. 17.
    R. Sauer, N. Teofilov, and K. Thonke, Diamond Relat. Mater. 13, 691 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. S. Baturin
    • 1
  • V. N. Gorelkin
    • 1
  • V. R. Soloviev
    • 1
  • I. V. Chernousov
    • 1
    Email author
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia

Personalised recommendations