, Volume 44, Issue 6, pp 816–823 | Cite as

Fabrication of heterostructures based on layered nanocrystalline silicon carbide polytypes

  • A. V. Semenov
  • A. V. Lopin
  • V. M. Puzikov
  • V. N. Baumer
  • I. N. Dmitruk
Fabrication, Treatment, and Testing of Materials and Structures


The study demonstrates the possibility of forming heterostructures consisting of nanocrystalline SiC layers of the cubic 3C polytype (the lower layer on the substrate) and the rhombohedral 21R polytype (the upper layer) by direction deposition of nanocrystalline SiC layers onto a substrate subjected to gradient heating. The structure and order of arrangement of the SiC layers are analyzed in detail by X-ray diffraction studies, femtosecond photoluminescence measurements, and optical spectroscopy. The nature of the peaks observed in the photoluminescence, optical reflectance, and absorption spectra is discussed.


Optical Reflectance Lopin Positive Temperature Gradient Optical Reflectance Spectrum Hexagonal Polytype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Fissel, U. Kaizer, B. Schroter, W. Richter, and A. Bechstedt, Appl. Surf. Sci. 184, 37 (2001).CrossRefADSGoogle Scholar
  2. 2.
    A. A. Lebedev, A. M. Strel’chuk, D. V. Davydov, N. S. Savkina, A. N. Kuznetsov, and L. M. Sorokin, Pis’ma Zh. Tekh. Fiz. 28(18), 89 (2002) [Tech. Phys. Lett. 28, 792(2002)].Google Scholar
  3. 3.
    A. A. Lebedev, V. N. Petrov, A. N. Titkov, L. M. Sorokin, A. S. Tregubova, G. N. Mosina, and A. E. Cherenkov, Pis’ma Zh. Tekh. Fiz. 31(23), 8 (2005) [Tech. Phys. Lett. 31, 997(2005)].Google Scholar
  4. 4.
    S. Yu. Davydov and O. V. Posrednik, Pis’ma Zh. Tekh. Fiz. 31(17), 58 (2005) [Tech. Phys. Lett. 31, 746 (2005)].Google Scholar
  5. 5.
    Silicon Carbide, Ed. by H. K. Henisch and R. Roy (Pergamon, 1969), p. 371.Google Scholar
  6. 6.
    Yu. V. Vodakov, G. A. Lomakina, and E. M. Mokhov, Solid State Phys. 24, 1377 (1982).Google Scholar
  7. 7.
    N. S. Savkina, A. A. Lebedev, D. V. Davydov, A. M. Strelchuk, A. S. Tregubova, C. Raynaud, J. R Chante, M. L. Locatelli, D. Planson, J. Nilan, P. Godignon, F. J. Campos, N. Nestres, J. Pascual, G. Brezeanu, and M. Batila, Mater. Sci. Eng. B 77, 50 (2000).CrossRefGoogle Scholar
  8. 8.
    A. Fissel, U. Kaizer, K. Pfennighaus, B. Schroter, and W. Richter, Appl. Phys. Lett. 68, 1204 (1996).CrossRefADSGoogle Scholar
  9. 9.
    S. Nishino, C. Jacob, and Y. Okui, J. Cryst. Growth 237–239, 1250 (2002).CrossRefGoogle Scholar
  10. 10.
    S. Kerdiles, R. Rizk, F. Gourbilleau, A. Perez-Rod-riguez, B. Garrido, O. Gonzalez-Varona, and J. R. Morante, Mater. Sci. Eng. B 69, 530 (2000).CrossRefGoogle Scholar
  11. 11.
    Y. Sun and T. J. Miyasato, Appl. Phys. 84, 2602 (1998).CrossRefGoogle Scholar
  12. 12.
    H. Spillman and P. R. Wilmott, Appl. Phys. A 70, 323 (2000).CrossRefADSGoogle Scholar
  13. 13.
    F. Liao, S. L. Girshick, W. M. Mook, W. W. Gerberich, and M. R. Zachariah, Appl. Phys. Lett. 86, 171913 (2005).CrossRefADSGoogle Scholar
  14. 14.
    V. C. George, A. Das, M. Roy, A. K. Dua, P. Raj, and D. R. T. Zahn, Thin Sol. Films 419, 114 (2002).CrossRefADSGoogle Scholar
  15. 15.
    T. Pajagopalan, X. Wang, B. Lanthouh, and C. Ramkumar, J. Appl. Phys. 94, 5252 (2003).CrossRefADSGoogle Scholar
  16. 16.
    A. Fissel, B. Schroter, U. Kaiser, and W. Richter, Appl. Phys. Lett. 77, 2418 (2000).CrossRefADSGoogle Scholar
  17. 17.
    A. V. Semenov, V. M. Puzikov, M. V. Dobrotvorskaya, A. G. Fedorov, and A. V. Lopin, Thin Sol. Films 516, 2899 (2008).CrossRefADSGoogle Scholar
  18. 18.
    A. V. Semenov, V. M. Puzikov, E. P. Golubova, V N. Baumer, and M. V. Dobrotvorskaya, Fiz. Tekh. Poluprovodn. 43, 714 (2009) [Semiconductors 43, 685 (2009)].Google Scholar
  19. 19.
    A. V. Semenov, A. V. Lopin, and V. M. Puzikov, Surface, X-Ray, Synchr. Neutron Res., No. 9, 99 (2004).Google Scholar
  20. 20.
    A. V. Semenov, S. N. Skorik, A. V. Lopin, V. M. Puzikov, V. N. Baumer, and P. V. Mateichenko, in Proc. of the 13th Nat. Conf. on Crystal Growth, Moscow, 17–22 Nov. 2008, p. 450; Poverkhnost’, No. 2, 7 (2010).Google Scholar
  21. 21.
    Physical Quantities, The Manual, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  22. 22.
    D. Bimberg, M. Altarelli, and N. O. Lipari, Solid State Commun. 40, 437 (1981).CrossRefADSGoogle Scholar
  23. 23.
    G. B. Dubrovskii, A. L. Lepneva, and E. I. Radovanova, Phys. Stat. Solidi B 57, 423 (1973).CrossRefADSGoogle Scholar
  24. 24.
    D. R. Hamilton, L. Patrick, and W. J. Choyke, Phys. Rev. A 138, 1472 (1965).CrossRefADSGoogle Scholar
  25. 25.
    Yu. Goldberg, M. E. Levinshtein, and S. L. Rumyantsev, in Properties of Advanced Semiconductor Materials GaN, AlN, SiC, BN, SiGe, Ed. by M. E. Levinshtein, S. L. Runyantsev, and M. S. Shur (Wiley, New York, 2001), p. 93.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. V. Semenov
    • 1
  • A. V. Lopin
    • 1
  • V. M. Puzikov
    • 1
  • V. N. Baumer
    • 1
  • I. N. Dmitruk
    • 2
  1. 1.Institute for Single CrystalsNational Academy of Sciences of UkraineKharkovUkraine
  2. 2.Institute of PhysicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations