Advertisement

Semiconductors

, Volume 44, Issue 6, pp 794–800 | Cite as

Mechanism of the GaN LED efficiency falloff with increasing current

  • N. I. Bochkareva
  • V. V. Voronenkov
  • R. I. Gorbunov
  • A. S. Zubrilov
  • Y. S. Lelikov
  • F. E. Latyshev
  • Y. T. Rebane
  • A. I. Tsyuk
  • Y. G. ShreterEmail author
Physics of Semiconductor Devices

Abstract

The quantum efficiency of GaN LED structures has been studied at various temperatures and biases. It was found that an efficiency falloff is observed with increasing current density and, simultaneously, the tunnel component of the current through the LED grows and the quasi-Fermi levels reach the mobility edge in the InGaN active layer. It is shown that the internal quantum efficiency falloff with increasing current density is due to the carrier leakage from the quantum well as a result of tunnel transitions from its band-tail states to local defect-related energy levels within the energy gaps of the barrier layers.

Keywords

Barrier Layer Quantum Well Spectral Efficiency External Quantum Efficiency Internal Quantum Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, Ed. by S. Nakamura and S. F. Chichibu (Taylor Francis, London, New York, 2000).Google Scholar
  2. 2.
    T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 38, 3976 (1999).CrossRefADSGoogle Scholar
  3. 3.
    P. G. Eliseev, M. Osin’ski, H. Li, and I. V. Akimova, Appl. Phys. Lett. 75, 3838 (1999).CrossRefADSGoogle Scholar
  4. 4.
    Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).CrossRefADSGoogle Scholar
  5. 5.
    M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).CrossRefADSGoogle Scholar
  6. 6.
    J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, Appl. Phys. Lett. 92, 261103 (2008).CrossRefADSGoogle Scholar
  7. 7.
    S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 34, L1332 (1995).CrossRefADSGoogle Scholar
  8. 8.
    N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Krames, Appl. Phys. Lett. 91, 243506 (2007).CrossRefADSGoogle Scholar
  9. 9.
    K. T. Delaney, P. Rinke, and C. G. Van de Walle, Appl. Phys. Lett. 94, 191109 (2009).CrossRefADSGoogle Scholar
  10. 10.
    H. Morkoč, Nitride Semiconductors and Devices (Springer, 1999).Google Scholar
  11. 11.
    A. Milnes and D. Feucht, Heterojunctions and Metal Semiconductor Junctions (Academic Press, New York, 1972; Mir, Moscow, 1975).Google Scholar
  12. 12.
    N. I. Bochkareva, E. A. Zhirnov, A. A. Efremov, Yu. T. Rebane, R. I. Gorbunov, and Yu. G. Shreter, Fiz. Tekh. Poluprovodn. 39, 627 (2005) [Semiconductors 39, 594 (2005)].Google Scholar
  13. 13.
    N. I. Bochkareva, D. V. Tarkhin, Yu. T. Rebane, R I. Gorbunov, Yu. S. Lelikov, I. A. Martynov, and Yu. G. Shreter, Fiz. Tekh. Poluprovodn. 41, 88 (2007) [Semiconductors 41, 87 (2007)].Google Scholar
  14. 14.
    H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).CrossRefADSGoogle Scholar
  15. 15.
    P. Perlin, M. Osinski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas, and P. Sartori, Appl. Phys. Lett. 69, 1680 (1996).CrossRefADSGoogle Scholar
  16. 16.
    C. H. Qiu, C. Hoggatt, W. Melton, M. W. Leksono, and J. I. Pankove, Appl. Phys. Lett. 66, 2712 (1995).CrossRefADSGoogle Scholar
  17. 17.
    L. Balagurov and P. J. Chong, Appl. Phys. Lett. 68, 43 (1996).CrossRefADSGoogle Scholar
  18. 18.
    S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, 1998).Google Scholar
  19. 19.
    A. Hori, D. Yasunaga, A. Satake, and K. Fujiwara, J. Appl. Phys. 93, 3152 (2003).CrossRefADSGoogle Scholar
  20. 20.
    R. W. Martin, P. G. Middleton, E. P. O’Donnell, and W. Van der Stricht, Appl. Phys. Lett. 74, 263 (1999).CrossRefADSGoogle Scholar
  21. 21.
    C. Gourdon and P. Lavallard, Phys. Stat. Solidi B 153, 641 (1989).CrossRefADSGoogle Scholar
  22. 22.
    Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, Phys. Rev. B 55, R1938 (1997).CrossRefADSGoogle Scholar
  23. 23.
    S. F. Chichibu, H. Marchand, M. S. Minsky, S. Keller, P. T. Fini, J. P. Ibbetson, S. B. Fleischer, J. S. Speck, J. E. Bowers, E. Hu, U. K. Mishra, S. P. DenBaars, T. Deguchi, T. Sota, and S. Nakamura, Appl. Phys. Lett. 74, 1460 (1999).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • N. I. Bochkareva
    • 1
  • V. V. Voronenkov
    • 2
  • R. I. Gorbunov
    • 1
  • A. S. Zubrilov
    • 1
  • Y. S. Lelikov
    • 1
  • F. E. Latyshev
    • 3
  • Y. T. Rebane
    • 1
  • A. I. Tsyuk
    • 2
  • Y. G. Shreter
    • 1
    Email author
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia
  3. 3.Fock Institute of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations