, Volume 44, Issue 6, pp 778–788 | Cite as

A high-temperature radiation-resistant rectifier based on p+-n junctions in 4H-SiC ion-implanted with aluminum

  • E. V. Kalinina
  • V. G. Kossov
  • R. R. Yafaev
  • A. M. Strel’chuk
  • G. N. Violina
Physics of Semiconductor Devices


A combination of a high-dose (5 s- 1016 cm-2) implantation of Al ions into epitaxial n-type 4H SiC layers grown by chemical deposition from th e vapor phase and rapid (15 s) thermal annealing at 1700–1750°C has been used to form layers with a rectangular impurity profile according to the mechanism of solid-phase epitaxial crystallization. The combined effects of enhanced diffusion of radiation defects after implantation and gettering of defects during annealing bring about an improvement in the quality of the initial material, which ensures an increase in the diffusion length of the minority charge carriers by several times. Metastable states annealed within different temperature ranges are formed in SiC under the effect of irradiation with various particles. Low-temperature annealing of radiation defects increases the radiation and temporal lifetime of devices under irradiation. High-temperature annealing of radiation defects makes it possible to vary the lifetime of nonequilibrium charge carriers, i.e, vary the frequency range of devices. The radiation resistance of SiC-based devices increases as the operation temperature is increased to 500°C.


Radiation Defect Strel Diode Structure High Energy Particle Nonequilibrium Charge Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. V. Kalinina, Fiz. Tekh. Poluprovodn. 41, 769 (2007) [Semiconductors 41, 745 (2007)].Google Scholar
  2. 2.
    L. W. Aukerman, H. C. Gorton, R. K. Willardson, and V. E. Bryson, Silicon Carbide, Ed. by J. R. O’Connor and J. Smiltens (Pergamon, Oxford, 1959).Google Scholar
  3. 3.
    E. N. Mokhov, M. M. Usmanova, G. F. Yuldashev, and B. S. Makhmudov, Neorg. Mater. 20, 1383 (1984).Google Scholar
  4. 4.
    E. N. Mokhov, Yu. A. Vodakov, and G. A. Lomakina, in Problems of Physics and Technology of Wide-Gap Semiconductors, Collected vol. (LIYad. Fiz., Leningrad, 1979), p. 136 [in Russian].Google Scholar
  5. 5.
    A. Syrkin, V. Dmitriev, R. Yakimova, A. Henry, and E. Janzén, Mater. Sci. Forum 389–393, 1173 (2002).CrossRefGoogle Scholar
  6. 6.
    O. Kordina, J. P. Bergman, A. Henry, E. Janzen, S. Savage, J. Andre, L. P. Ramberg, U. Lindefelt, W. Hermansson, and K. Bergman, Appl. Phys. Lett. 67, 1561 (1995).CrossRefADSGoogle Scholar
  7. 7.
    P. A. Ivanov, M. E. Levinshtein, K. G. Irvine, O. Kordina, J. W. Palmour, S. L. Rumyantsev, and R. Singh, Electron. Lett. 35, 1382 (1999).CrossRefGoogle Scholar
  8. 8.
    W. Shockley, U.S. Patent No. 2787564 (1957).Google Scholar
  9. 9.
    G. A. Lomakina, Yu. A. Vodakov, E. N. Mokhov, V. G. Oding, and G. F. Kholuyanov, Fiz. Tverd. Tela 12, 2918 (1970) [Sov. Phys. Solid State 12, 2356 (1970)].Google Scholar
  10. 10.
    V. M. Gusev, K. D. Demakov, M. G. Kasaganova, M. B. Reifman, and V. G. Stolyarova, Fiz. Tekh. Poluprovodn. 9, 1238 (1975) [Sov. Phys. Semicond. 9, 820 (1975)].Google Scholar
  11. 11.
    J. A. Edmond, K. Das, and R. F. Davis, J. Appl. Phys. 3, 922 (1988).CrossRefADSGoogle Scholar
  12. 12.
    Y. Negoro, N. Miyamoto, T. Kimoto, and M. Matsu-nami, Mater. Sci. Forum 389–393, 1273 (2002).CrossRefGoogle Scholar
  13. 13.
    D. Peters, R. Elpelt, R. Schorner, K. O. Dohke, P. Friedrichs, and D. Stephani, Mater. Sci. Forum 483–485, 977 (2005).CrossRefGoogle Scholar
  14. 14.
    W. Anwand, G. Brauer, P. G. Coleman, R. Yankov, and W. Skorupa, Appl. Surf. Sci. 149, 140 (1999).CrossRefADSGoogle Scholar
  15. 15.
    J. Slotte, K. Saarinen, M. S. Janson, A. Hallén, A. Yu. Kuznetsov, B. G. Svensson, J. Wong-Leung, and C. Jagadish, J. Appl. Phys. 97, 033513 (2005).CrossRefADSGoogle Scholar
  16. 16.
    M. Oberndorfer, M. Krieger, F. Schmid, H. B. Weber, G. Pensl, and A. Schoner, Mater. Sci. Forum 556–557, 343 (2007).CrossRefGoogle Scholar
  17. 17.
    M. V. Rao, J. Gardner, P. Griffiths, O. W. Holland, G. Kelner, P. H. Chi, and D. S. Simons, Nucl. Instrum. Methods Phys. Res. B 106, 333 (1995).CrossRefADSGoogle Scholar
  18. 18.
    J. M. Bluet, J. Pernot, J. Camassel, S. Contreras, J. L. Robert, J. F. Michaud, and T. Billon, J. Appl. Phys. 88, 1971 (2000).CrossRefADSGoogle Scholar
  19. 19.
    R. Nipoti, F. Bergmini, F. Moscatelli, A. Poggi, M. Canino, and G. Bertuccio, Mater. Sci. Forum 527–529, 815 (2006).CrossRefGoogle Scholar
  20. 20.
    E. V. Kalinina, N. K. Prokof’eva, A. V. Suvorov, G. F Kholuyanov, and V. E. Chelnokov, Fiz. Tekh. Poluprovodn. 12, 2305 (1978) [Sov. Phys. Semicond. 12, 1372 (1978)].Google Scholar
  21. 21.
    E. V. Kalinina, A. V. Suvorov, and G. F. Kholuyanov, Fiz. Tekh. Poluprovodn. 14, 1099 (1980) [Sov. Phys. Semicond. 14, 652 (1980)].Google Scholar
  22. 22.
    Yu. A. Vodakov, K. D. Demakov, E. V. Kalinina, E. N. Mokhov, M. G. Ramm, and G. F. Kholuyanov, Fiz. Tekh. Poluprovodn. 21, 1685 (1987) [Sov. Phys. Semicond. 21, 1017 (1987)].Google Scholar
  23. 23.
    C. E. Barnes, Appl. Phys. Lett. 20, 86 (1972).CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    I. V. Ryzhikov, I. L. Kasatkin, and E. F. Uvarov, Elektron. Tekhn. Ser. 2 4, 9 (1981).Google Scholar
  25. 25.
    V. V. Evstropov and A. M. Strel’chuk, Fiz. Tekh. Poluprovodn. 30, 92 (1996) [Semiconductors 30, 52 (1996)].Google Scholar
  26. 26.
    A. Yu. Nikiforov, A. V. Afanas’ev, V. A. Il’in, V. V. Luchi-nin, and A. A. Petrov, in Radiation Resistance of Electronic Systems: Stability-2001, Collected vol. (Paims, Moscow, 2001), No. 4, p. 145 [in Russian].Google Scholar
  27. 27.
    A. Yu. Nikiforov, P. A. Ivanov, and V. V. Luchinin, in Radiation Resistance of Electronic Systems: Stability-2002, Collected vol. (Paims, Moscow, 2002), No. 5, p. 5 [in Russian].Google Scholar
  28. 28.
    A. Castaldini, A. Cavallini, L. Rigutti, and F. Nava, Appl. Phys. Lett. 85, 3780 (2004).CrossRefADSGoogle Scholar
  29. 29.
    N. B. Strokan, A. M. Ivanov, N. S. Savkina, A. A. Le-bedev, V. V. Kozlovskii, M. Syvajarvi, and R. Yakimova, Fiz. Tekh. Poluprovodn. 38, 841 (2004) [Semiconductors 38, 807 (2004)].Google Scholar
  30. 30.
    F. Nava, F. E. Vittone, P. Vanni, G. Verzellesi, P. G. Fuochi, C. Lanzieri, and M. Glaser, Nucl. Instrum. Methods Phys. Res. A 505, 645 (2003).CrossRefADSGoogle Scholar
  31. 31.
    A. M. Ivanov, A. A. Lebedev, and N. B. Strokan, Fiz. Tekh. Poluprovodn. 40, 1259 (2006) [Semiconductors 40, 864 (2006)].Google Scholar
  32. 32.
    S. Sciortino, F. Hartjes, S. Lagomarsino, F. Nava, M. Brianzi, V. Cindro, C. Lanzieri, M. Moll, and P. Vanni, Nucl. Instrum. Methods Phys. Res. A 552, 138 (2005).CrossRefADSGoogle Scholar
  33. 33.
    A. I. Girka, A. Yu. Didyk, A. D. Mokrushin, and E. N. Mokhov, Pis’ma Zh. Tekh. Fiz. 25, 24 (1999) [Tech. Phys. Lett. 25, 134 (1999)].Google Scholar
  34. 34.
    L. Liszkay, K. Havancsak, M.-F. Barthe, P. Desgardin, L. Henry, Zs. Kajcsos, G. Battistig, E. Szilagyi, and V. A. Skuratov, Mater. Sci. Forum 363, 123 (2001).CrossRefGoogle Scholar
  35. 35.
    E. V. Kalinina, V. A. Skuratov, A. A. Sitnikova, A. A. Ko-lesnikova, A. S. Tregubova, and M. P. Shcheglov, Fiz. Tekh. Poluprovodn. 41, 392 (2007) [Semiconductors 41, 376(2007)].Google Scholar
  36. 36.
    G. K. Reeves, Solid State Electron. 23, 487 (1980).CrossRefADSGoogle Scholar
  37. 37.
    E. V. Kalinina, N. B. Strokan, A. M. Ivanov, A. A. Sitnikova, A. Sadokhin, A. Azarov, V. G. Kossov, and R. R. Yafaev, Fiz. Tekh. Poluprovodn. 42, 87 (2008) [Semiconductors 42, 86 (2008)].Google Scholar
  38. 38.
    O. V. Aleksandrov and E. V. Kalinina, Fiz. Tekh. Poluprovodn. 43, 584 (2009) [Semiconductors 43, 557 (2009)].Google Scholar
  39. 39.
    E. Kalinina, G. Kholujanov, A. Sitnikova, V. Kossov, R. Yafaev, G. Pensl, S. Reshanov, A. Hallén, and A. Konstantinov, Mater. Sci. Forum 433–436, 637 (2003).CrossRefGoogle Scholar
  40. 40.
    E. Kalinina, G. Kholujanov, A. Zubrilov, N. Kuznetsov, I. Nikitina, A. Tregubova, M. Shcheglov, and V. Bratus’, J. Appl. Phys. 90, 5402 (2001).CrossRefADSGoogle Scholar
  41. 41.
    E. Kalinina, V. Kossov, A. Shchukarev, V. Bratus’, G. Pensl, S. Rendakova, V. Dmitriev, and A. Hallén, Mater. Sci. Eng. B 80, 337 (2001).CrossRefGoogle Scholar
  42. 42.
    E. Kalinina, G. Kholujanov, V. Solov’ev, A. Strel’chuk, V. Kossov, R. Yafaev, A. Kovarski, A. Shchukarev, S. Obyden, G. Saparin, P. Ivannikov, A. Hallén, and A. Konstantinov, Appl. Surf. Sci. 184, 323 (2001).CrossRefADSGoogle Scholar
  43. 43.
    E. V. Kolesnikova, E. V. Kalinina, A. A. Sitnikova, M. V. Zamoryanskaya, and T. B. Popova, Solid St. Phenom. 131–133, 53 (2008).CrossRefGoogle Scholar
  44. 44.
    E. Kalinina, G. Kholujanov, V. Solov’ev, A. Strel’chuk, and A. Zubrilov, Appl. Phys. Lett. 77, 3051 (2000).CrossRefADSGoogle Scholar
  45. 45.
    A. M. Strel’chuk, Fiz. Tekh. Poluprovodn. 29, 1190 (1995) [Semiconductors 29, 614 (1995)].Google Scholar
  46. 46.
    F. Moscatelli, A. Scorzoni, A. Poggi, G. C. Cardinali, and R. Nipoti, Mater. Sci. Forum 433–436, 673 (2003).CrossRefGoogle Scholar
  47. 47.
    E. Kalinina, G. Onushkin, A. Strel’chuk, D. Davidov, V. Kossov, R. Yafaev, A. Hallén, A. Kuznetsov, and A. Konstantinov, Phys. Scr. 101, 207 (2002).CrossRefGoogle Scholar
  48. 48.
    L. Patrick and W. J. Choyke, Phys. Rev. B 5, 3253 (1972).CrossRefADSGoogle Scholar
  49. 49.
    E. V. Kalinina, G. F. Kholuyanov, G. A. Onushkin, D. V. Davydov, A. M. Strel’chuk, A. O. Konstantinov, A. Hallén, A. Yu. Nikiforov, V. A. Skuratov, and K. Havancsak, Fiz. Tekh. Poluprovodn. 38, 1223 (2004) [Semiconductors 38, 1187 (2004)].Google Scholar
  50. 50.
    E. V. Kalinina, G. F. Kholuyanov, D. V. Davydov, A. M. Strel’chuk, A. Hallén, A. O. Konstantinov, V V. Luchinin, and A. Yu. Nikiforov, Fiz. Tekh. Poluprovodn. 37, 1260 (2003) [Semiconductors 37, 1229 (2003)].Google Scholar
  51. 51.
    A.V. Afanas’ev, V. A. Il’in, and A. A. Petrov, Peterb. Zh. Élektron. 3–4, 12 (2000).Google Scholar
  52. 52.
    A. M. Strel’chuk, E. V. Kalinina, A. O. Konstantinov, and A. Hallén, Mater. Sci. Forum 483–485, 993 (2005).CrossRefGoogle Scholar
  53. 53.
    A. M. Strel’chuk, V. V. Kozlovski, N. S. Savkina, M. G. Rastegaeva, and A. N. Andreev, Mater. Sci. Eng. 61–62, 441 (1999).CrossRefGoogle Scholar
  54. 54.
    A. Y. Nikiforov, P. K. Skorobogatov, D. V. Boychenko, V. S. Figurov, V. V. Luchinin, and E. V. Kalinina, in Proc. of RADECS 2003 (Noordwijk, Netherlands, 2003), p. 15.Google Scholar
  55. 55.
    E. Kalinina, A. Strel’chuk, A. Lebedev, N. Strokan, A. Ivanov, and G. Kholuyanov, Mater. Sci. Forum 527–529, 473 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • E. V. Kalinina
    • 1
  • V. G. Kossov
    • 2
  • R. R. Yafaev
    • 2
  • A. M. Strel’chuk
    • 1
  • G. N. Violina
    • 3
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Electron OptronicSt. PetersburgRussia
  3. 3.St. Petersburg State Electrotechnical University (LETI)St. PetersburgRussia

Personalised recommendations