, Volume 44, Issue 5, pp 685–690 | Cite as

Luminescent and structural properties of ZnO-Ag films

  • V. S. KhomchenkoEmail author
  • V. I. Kushnirenko
  • V. P. Papusha
  • A. K. Savin
  • O. S. Lytvyn
Fabrication, Treatment, and Testing of Materials and Structures


ZnO-Ag thin films were prepared by a two-stage method on glass and sapphire substrates. Ag doping was carried out by a method of close space sublimation at atmospheric pressure. The film thickness is varied from 0.6 to 7 μm. The structural and radiative properties were explored by X-ray diffraction technique, atomic force microscopy, photoluminescence and cathodoluminescence spectroscopy. The influence of the fabricating conditions on the properties of ZnO-Ag films is studied. It is found that the Ag doping modifies the crystalline structure of the films and promotes the oriented growth of monocrystalline blocks with the size of 500–2000 nm in the [0002] direction. Improvement of the crystalline quality correlates with the change of the radiative characteristics of the films. The origin of emission centers is discussed.


Sapphire Substrate Gaussian Component Emission Center Electron Beam Current Atomic Layer Epitaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Klingshirn, Phys. Stat. Solidi B 244, 3027 (2007).CrossRefADSGoogle Scholar
  2. 2.
    Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S.-J. Cho, and H. Morko J. Appl. Phys. 98, 041301 (2005).CrossRefADSGoogle Scholar
  3. 3.
    C. Bittencourt, E. Llobet, P. Ivanov, X. Vilanova, X. Correig, M. A. P. Silva, L. A. O. Nunes, and J. J. Pireaux, J. Phys. D: Appl. Phys. 37, 3383 (2004).CrossRefADSGoogle Scholar
  4. 4.
    H. Xue, Y. Chen, X. L. Xu, G. H. Zhang, H. Zhang, and S. Y. Ma, Physica E 41, 788 (2009).CrossRefADSGoogle Scholar
  5. 5.
    V. S. Khomchenko, V. E. Rodionov, and V. E. Tzyrkunov, in Proc. of the SID 7th Int. Symp. on Advanced Display Technologies (Belarus, Minsk, 1998), p. 218.Google Scholar
  6. 6.
    V. S. Khomchenko, T. G. Kryshtab, A. K. Savin, L. V. Zavyalova, N. N. Roshchina, V. E. Rodionov, O. S. Lytvyn, V. I. Kushnirenko, V. B. Khachatryan, and J. A. Andraca-Adame, Superlat. Microstruct. 42(1–6), 94 (2007).CrossRefADSGoogle Scholar
  7. 7.
    A. N. Gruzintsev, V. T. Volkov, and E. E. Yakimov, Fiz. Tekh. Poluprovodn. 37, 275 (2003) [Semiconductors 37, 259 (2003)].Google Scholar
  8. 8.
    J. Lim, K. Shin, H. W. Kim, and C. Lee, J. Lumin. 109(3–4), 181 (2004).Google Scholar
  9. 9.
    L. Zhen-hua, L. Ying-yi, Z. Dan, X. Xin, and L. Yong-Xiu, J. Lumin. 128, 1758 (2008).CrossRefGoogle Scholar
  10. 10.
    I. P. Kuz’mina and V. A. Nikitenko, Zinc Oxide. Production and Optical Properties (Nauka, Moscow, 1984) [in Russian].Google Scholar
  11. 11.
    D. A. Lucca, D. W. Hamby, M. J. Klopfstein, and G. Cantwell, Phys. Stat. Solidi B 229, 845 (2002).CrossRefADSGoogle Scholar
  12. 12.
    K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. S. Khomchenko
    • 1
    Email author
  • V. I. Kushnirenko
    • 1
  • V. P. Papusha
    • 1
  • A. K. Savin
    • 1
  • O. S. Lytvyn
    • 1
  1. 1.V.E. Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations