Advertisement

Semiconductors

, Volume 44, Issue 2, pp 171–183 | Cite as

Electrical properties of hybrid (ferromagnetic metal)—(layered semiconductor) Ni/p–GaSe structures

  • A. P. BakhtinovEmail author
  • V. N. Vodopyanov
  • Z. D. Kovalyuk
  • V. V. Netyaga
  • O. S. Lytvyn
Semiconductor Structures, Interfaces, and Surfaces

Abstract

Two-barrier Ni/n-Ga2Se3/p-GaSe structures with nanoscale Ni-alloy grains caused by reactions at the “metal-layered semiconductor” interface were formed after growing Ni layers on the p-GaSe (0001) surface. Current–voltage and capacitance–voltage characteristics of hybrid structures were studied in the temperature range of 220–350 K. The dependence of the impedance spectra on the bias voltage was studied at various temperatures. The frequency dependences of the impedance at high frequencies (f = 106 Hz) are discussed in terms of the phenomena of spin injection and extraction in structures with an ultrathin spin-selective Ni/n-Ga2Se3 barrier and the effects of spin diffusion and relaxation in the semiconductor substrate. The room-temperature phenomena of the Coulomb blockade and negative differential capacitance were detected. These phenomena are explained based on an analysis of transport processes in a narrow region near the “ferromagnetic metal–semiconductor” interface, where nanoscale grains are arranged.

Keywords

Bias Voltage Impedance Spectrum Space Charge Region Hybrid Structure Forward Bias 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Fert, Usp. Fiz. Nauk 178, 1336 (2008) [Phys. Usp. 51, 1336 (2008)].CrossRefGoogle Scholar
  2. 2.
    I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).CrossRefADSGoogle Scholar
  3. 3.
    A. M. Bratkovsky, Rep. Progr. Phys. 71, 026502 (2008).CrossRefADSGoogle Scholar
  4. 4.
    T. Dietl, J. Appl. Phys. 103, 07D111 (2008).CrossRefGoogle Scholar
  5. 5.
    R. I. Dzhigoev, B. P. Zakharchenya, K. V. Kavokin, and M. V. Lazarev, Fiz. Tverd. Tela 45, 2153 (2003) [Phys. Solid State 45, 2255 (2003)].Google Scholar
  6. 6.
    V. F. Motsnyi, J. De Boeck, J. Das, W. Van Roy, G. Borghs, E. Goovaerts, and V. I. Safarov, Appl. Phys. Lett. 81, 265 (2002).CrossRefADSGoogle Scholar
  7. 7.
    A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglu, and A. Petrou, Appl. Phys. Lett. 80, 1240 (2002).CrossRefADSGoogle Scholar
  8. 8.
    X. Lou, C. Adelmann, M. Furis, S. A. Crooker, C. J. Palmstrom, and P. A. Crowell, Phys. Rev. Lett. 96, 176603 (2006).CrossRefADSGoogle Scholar
  9. 9.
    E. I. Rashba, Appl. Phys. Lett. 80, 2329 (2002).CrossRefADSGoogle Scholar
  10. 10.
    A. Koma, Thin Solid Films 216, 72 (1992).CrossRefADSGoogle Scholar
  11. 11.
    W. Jaegermann, C. Pettenkofer, and B. A. Parkinson, Phys. Rev. B 42, 7487 (1990).CrossRefADSGoogle Scholar
  12. 12.
    V. L. Bakumenko, Z. D. Kovalyuk, L. N. Kurbatov, V. G. Tagaev, and V. F. Chishko, Fiz. Tekh. Poluprovodn. 14, 1115 (1980) [Sov. Phys. Semicond. 14, 661 (1980)].Google Scholar
  13. 13.
    S. Shigetomi, T. Ikari, and H. Nakashima, J. Appl. Phys. 76, 310 (1994).CrossRefADSGoogle Scholar
  14. 14.
    J. Martinez-Pastor, A. Segura, J. L. Valdes, and A. Chevy, J. Appl. Phys. 62, 1477 (1987).CrossRefADSGoogle Scholar
  15. 15.
    R. Mamy, X. Zaoni, J. Barrau, and A. Chevy, Rev. Phys. Appl. 25, 947 (1990).Google Scholar
  16. 16.
    W. C. Huang, S. H. Su, Y. K. Hsu, C. C. Wang, and C. S. Chang, Superlat. Microstruct. 40, 644 (2006).CrossRefADSGoogle Scholar
  17. 17.
    Y. Cui, R. Dupere, A. Burger, D. Johnstone, K. C. Mandal, and S. A. Payne, J. Appl. Phys. 103, 013710 (2008).CrossRefADSGoogle Scholar
  18. 18.
    S. Duman, B. Gurbulak, S. Dogan, and A. Turut, Microelectron. Eng. 86, 106 (2009).CrossRefGoogle Scholar
  19. 19.
    N. Jedrecy, R. Pinchaux, and M. Eddrief, Phys. Rev. B 56, 9583 (1997).CrossRefADSGoogle Scholar
  20. 20.
    Z. R. Dai and F. S. Ohuchi, Appl. Phys. Lett. 73, 966 (1998).CrossRefADSGoogle Scholar
  21. 21.
    M. Eddrief, Y. Wang, V. H. Etgens, D. H. Mosca, J._L. Maurice, J. M. Jeorge, A. Fert, and S. Bourgognou, Phys. Rev. B 63, 094428 (2001).CrossRefADSGoogle Scholar
  22. 22.
    A. R. de Moraes, D. H. Mosca, N. Mattoso, J. L. Guimaraes, J. J. Klein, W. H. Shreiner, P. E. N. de Sousa, A. J. A. de Oliveira, M. A. Z. de Vasconcellos, D. Demaille, M. Eddrief, and V. H. Etgens, J. Phys.: Condens. Matter 18, 1165 (2006).CrossRefADSGoogle Scholar
  23. 23.
    V. V. Slynko, A. G. Khandozhko, Z. D. Kovalyuk, V. E. Slynko, A. V. Zaslonkin, M. Arciszewska, and W. Dobrowolski, Phys. Rev. B 71, 245301 (2005).CrossRefADSGoogle Scholar
  24. 24.
    N. T. Pokladok, I. I. Grigorchak, B. A. Lukianets, and D. I. Popovich, Fiz. Tverd. Tela 49, 681 (2007) [Phys. Solid State 49, 715 (2007)].Google Scholar
  25. 25.
    I. I. Grigorchak, A. I. Pelekhovich, and N. V. Volynskaya, Fiz. Tekh. Poluprovodn. 42, 385 (2008) [Semi-conductors 42, 375 (2008)].Google Scholar
  26. 26.
    S. I. Drapak, V. I. Gavrilyuk, Z. D. Kovalyuk, and O. S. Litvin, Fiz. Tekh. Poluprovodn. 42, 423 (2008) [Semiconductors 42, 414 (2008)].Google Scholar
  27. 27.
    G. J. Hughes, A. McKinley, R. H. Williams, and I. T. McGovern, J. Phys. C: Sol. St. Phys. 15, L159 (1982).CrossRefADSGoogle Scholar
  28. 28.
    S. I. Drapak, A. P. Bakhtinov, S. V. Gavrylyuk, Z. D. Kovalyuk, and O. S. Lytvyn, Superlat. Microstruct. 44, 563 (2008).CrossRefADSGoogle Scholar
  29. 29.
    A. P. Bakhtinov, V. N. Vodop’yanov, E. I. Slyn’ko, and Z. D. Kovalyuk, Pis’maZh. Tekh. Fiz. 33 (2), 80 (2007) [Tech. Phys. Lett. 33, 86 (2007)].Google Scholar
  30. 30.
    H. S. Venugopalan, S. E. Mohney, B. P. Luther, S. D. W. Wolfer, and J. M. Redwing, J. Appl. Phys. 82, 650 (1997).CrossRefADSGoogle Scholar
  31. 31.
    P. Nielsen and J. J. Ritsko, J. Appl. Phys. 49, 632 (1978).CrossRefADSGoogle Scholar
  32. 32.
    A. I. Balitskii, A. S. Krochuk, I. M. Stakhira, and A. V. Franiv, Fiz. Tverd. Tela 24, 76 (1982) [Sov. Phys. Solid State 24, 42 (1982)].Google Scholar
  33. 33.
    V. Vasyltsiv, V. Kutsai, V. Savchyn, and Ya. Eiyala, Ukr. Phys. J. 44, 1380 (1999).Google Scholar
  34. 34.
    V. M. Koshkin, Current Problems in the Chemistry and Physics of Complex Semiconductor Compounds (Uzhgorod, 1970), p. 26 [in Russian].Google Scholar
  35. 35.
    M. Peressi and A. Basdereschi, J. Appl. Phys. 83, 3092 (1998).CrossRefADSGoogle Scholar
  36. 36.
    V. Chican and D. F. Kelley, Nano Lett. 2, 141 (2002).CrossRefADSGoogle Scholar
  37. 37.
    D. A. Schmidt, T. Ohta, C. Y. Lu, A. A. Bostwick, O. Yu, E. Rotenberger, F. S. Ohuchi, and M. A. Olmstead, Appl. Phys. Lett. 88, 181903 (2006).CrossRefADSGoogle Scholar
  38. 38.
    A. Tsormapatzoglou, D. H. Tassis, C. A. Dimitriadis, L. Dozsca, N. G. Galkin, D. L. Goroshko, V. O. Polyarnyi, and E. A. Chusovitin, J. Appl. Phys. 100, 074313 (2006).Google Scholar
  39. 39.
    R. T. Tung, Phys. Rev. B 45, 13509 (1992).CrossRefADSGoogle Scholar
  40. 40.
    S. I. Drapak, V. B. Orletskii, Z. D. Kovalyuk, and V. V. Netyaga, Fiz. Tekh. Poluprovodn. 37, 196 (2003) [Semiconductors 37, 187 (2003)].Google Scholar
  41. 41.
    M. Di Giulio, G. Micocci, and A. Tepore, Solid State Electron. 27, 1015 (1984).CrossRefGoogle Scholar
  42. 42.
    P. N. Brunov, A. A. Suvorova, N. A. Berg, A. F. Kovsh, A. E. Zhukov, A. Yu. Egorov, V. M. Ustinov, A. F. Tsatsul’nikov, N. N. Ledentsov, P. S. Kop’ev, S. G. Konnikov, L. Ivs, and P. S. Mains, Fiz. Tekh. Poluprovodn. 32, 1229 (1998) [Semiconductors 32, 1096 (1998)].Google Scholar
  43. 43.
    S. D. Lin, V. V. Ilchenko, V. V. Marin, N. N. Shkil, A. A. Buyanin, K. Y. Panarin, and O. V. Tretyak, Appl. Phys. Lett. 90, 263114 (2006).CrossRefADSGoogle Scholar
  44. 44.
    A. K. Jonscher, C. Pickup, and S. H. Zaidi, Semicond. Sci. Technol. 1, 71 (1986).CrossRefADSGoogle Scholar
  45. 45.
    M. Matsumura and Y. Hirose, Appl. Surf. Sci. 175-176, 740 (2001).CrossRefADSGoogle Scholar
  46. 46.
    J. D. Albrecht and D. L. Smith, Phys. Rev. B 68, 035340 (2003).CrossRefADSGoogle Scholar
  47. 47.
    V. V. Osipov and A. M. Bratkovsky, Appl. Phys. Lett. 84, 2118 (2004).CrossRefADSGoogle Scholar
  48. 48.
    A. M. Bratkovsky and V. V. Osipov, J. Appl. Phys. 96, 4525 (2004).CrossRefADSGoogle Scholar
  49. 49.
    Yu. V. Pershin, Phys. Rev. B 77, 073301 (2008).CrossRefADSGoogle Scholar
  50. 50.
    A. G. Petukhov, J. Niggemann, V. N. Smelyanskiy, and V. V. Osipov, J. Phys.: Condens. Matter 19, 315205 (2007).CrossRefADSGoogle Scholar
  51. 51.
    M. Ershov, H. C. Liu, L. Li, M. Buchanan, Z. R. Wasilewski, and A. K. Jonscher, IEEE Trans. Electron. Dev. 45, 2196 (1998).CrossRefADSGoogle Scholar
  52. 52.
    J. Werner, A. F. J. Levi, R. T. Tung, M. Anzlovar, and M. Pinto, Phys. Rev. Lett. 60, 53 (1988).CrossRefADSGoogle Scholar
  53. 53.
    W. Huang, J. Peng, L. Wang, J. Wang, and Y. Cao, Appl. Phys. Lett. 92, 013308 (2008).CrossRefADSGoogle Scholar
  54. 54.
    A. J. Chiquito, Yu. A. Pusep, S. Mergulhao, J. S. Galzerani, N. T. Moshegov, and D. L. Miller, J. Appl. Phys. 88, 1987 (2000).CrossRefADSGoogle Scholar
  55. 55.
    Y. Y. Proskuryakov, K. Durose, B. M. Taele, and S. Oelting, J. Appl. Phys. 102, 025504 (2007).CrossRefGoogle Scholar
  56. 56.
    W. Rudzinski and J. Barnas, Phys. Rev. B 64, 085318 (2001).CrossRefADSGoogle Scholar
  57. 57.
    P. W. Li, W. M. Liao, D. M. T. Kuo, S. W. Lin, P. S. Chen, S. C. Lu, and M. J. Tsai, Appl. Phys. Lett. 85, 1532 (2004).CrossRefADSGoogle Scholar
  58. 58.
    I. Weymann and J. Barnas, Phys. Rev. B 77, 075305 (2008).CrossRefADSGoogle Scholar
  59. 59.
    J. C. A. Huang and H. S. Hsu, Appl. Phys. Lett. 87, 132503 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. P. Bakhtinov
    • 1
    Email author
  • V. N. Vodopyanov
    • 1
  • Z. D. Kovalyuk
    • 1
  • V. V. Netyaga
    • 1
  • O. S. Lytvyn
    • 2
  1. 1.Frantsevich Institute of Materials Science Problems, Chernivtsi BranchNational Academy Sciences of UkraineChernivtsiUkraine
  2. 2.Lashkarev Institute of Semiconductor PhysicsNational Academy Sciences of UkraineKyivUkraine

Personalised recommendations