, Volume 44, Issue 1, pp 66–71 | Cite as

Electroluminescence in p-InAs/AlSb/InAsSb/AlSb/p(n)-GaSb type II heterostructures with deep quantum wells at the interface

  • M. P. Mikhailova
  • E. V. Ivanov
  • K. D. Moiseev
  • Yu. P. Yakovlev
  • E. Hulicius
  • A. Hospodkova
  • J. Pangrac
  • T. Šimeček
Low-Dimensional Systems


Luminescent characteristics of asymmetric p-InAs/AlSb/InAsSb/AlSb/p-GaSb type II heterostructures with deep quantum wells at the heterointerface are studied. The heterostructures were grown by metalorganic vapor phase epitaxy. Intense positive and negative luminescence was observed in the range of photon energies of 0.3–0.4 eV with a forward and reverse bias, respectively. Dependences of the spectra and intensities for positive and negative luminescence on the pumping current and on the temperature are studied in the range of 77–380 K. It is established that, at a temperature higher than 75°C, intensity of negative luminescence surpasses that of positive luminescence by 60%. The suggested heterostructures can be used as lightemitting diodes (photodiodes) with switched positive and negative luminescence in the mid-IR spectral range of 3–4 μm.


GaSb Reverse Bias Forward Bias Pump Current AlSb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Nakagawa, H. Kroemer, and J. H. English, Appl. Phys. Lett. 54, 1893 (1989).CrossRefADSGoogle Scholar
  2. 2.
    R. Teissier, D. Barate, A. Vicet, C. Alibert, A. N. Baranov, C. Marcadet, C. Renard, M. Garcia, C. Sirtori, D. Revin, and J. Cockburn, Appl. Phys. Lett. 85, 167 (2004).CrossRefADSGoogle Scholar
  3. 3.
    W. Kruppa, M. J. Yang, B. R. Bennett, and J. B. Boos, Appl. Phys. Lett. 85, 774 (2004).CrossRefADSGoogle Scholar
  4. 4.
    R. E. Carnahan, M. A. Maldonado, K. P. Martin, A. Nogaret, R. J. Higgins, L. A. Cury, D. K. Maude, J. C. Portal, J. F. Chen, and A. Y. Cho, Appl. Phys. Lett. 62, 1385 (1993).CrossRefADSGoogle Scholar
  5. 5.
    N. Kuze, K. Nagase, S. Muramatsu, S. Miya, T. Iwabuchi, A. Ichii, and I. Shibasaki, J. Cryst. Growth 150(pt 2), 1307 (1995).CrossRefADSGoogle Scholar
  6. 6.
    K. D. Moiseev, E. V. Ivanov, G. G. Zegrya, M. P. Mikhailova, Yu. P. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrac, K. Melichar, and T. Simecek, Appl. Phys. Lett. 88, 132102 (2006).CrossRefADSGoogle Scholar
  7. 7.
    T. I. Voronina, T. S. Lagunova, M. P. Mikhailova, K. D. Moiseev, A. F. Lipaev, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn. 40, 519 (2006) [Semiconductors 40, 503 (2006)].Google Scholar
  8. 8.
    L. F. Luo, R. Beresford, and W. I. Wang, Appl. Phys. Lett. 55, 2023 (1989).CrossRefADSGoogle Scholar
  9. 9.
    S. Ideshita, A. Furukawa, Y. Mochizuki, and M. Mizuta, Appl. Phys. Lett. 60, 2549 (1992).CrossRefADSGoogle Scholar
  10. 10.
    Fu-Cheng Wang, W. E. Zhang, C. H. Yang, M. J. Yang, and B. R. Bennett, Appl. Phys. Lett. 69, 1417 (1996).CrossRefADSGoogle Scholar
  11. 11.
    M. P. Mikhailova, K. D. Moiseev, T. I. Voronina, T. S. Lagunova, and Yu. P. Yakovlev, J. Appl. Phys. 102, 113710 (2007).CrossRefADSGoogle Scholar
  12. 12.
    H. Sakaki, Y. Noda, K. Hirakawa, M. Tanaka, and T. Matsusue, Appl. Phys. Lett. 51, 1934 (1987).CrossRefADSGoogle Scholar
  13. 13.
    K. Schmalz, I. N. Yassievich, E. J. Collart, and D. J. Gravesteijn, Phys. Rev. B 54, 16799 (1996).CrossRefADSGoogle Scholar
  14. 14.
    S. Sasa, M. Nakai, M. Furukawa, M. Inoue, D. Larrabee, and J. Kono, in Proc. of the 12th Intern. Conf. on Narrow Gap Semiconductors, Toulouse, France, 2005, Inst. Phys. Conf. Ser. 187, Ed. by J. Kono and J. Leotin (Taylor Francis, New York, London, 2006), pt. IV, p. 363.Google Scholar
  15. 15.
    D. G. Andrianov, V. V. Karataev, G. V. Lazareva, Yu. B. Muravlev, and A. S. Savel’ev, Fiz. Tekh. Poluprovodn. 11, 1252 (1977) [Sov. Phys. Semicond. 11, 738 (1977)].Google Scholar
  16. 16.
    M. P. Mikhailova, G. G. Zegrya, K. D. Moiseev, and Yu. P. Yakovlev, Solid State Electron. 40, 673 (1996).CrossRefADSGoogle Scholar
  17. 17.
    Handbook Series of Semiconductor Parameters, Ed. by M. Levinstein, S. Rumyantsev, and M. Shur (World Sci., Singapore, New York, London, Hong Kong, 1996), v. 1.Google Scholar
  18. 18.
    V. I. Ivanov-Omskii and B. A. Matveev, Fiz. Tekh. Poluprovodn. 41, 257 (2007) [Semiconductors 41, 247 (2007)].Google Scholar
  19. 19.
    T. Ashley and G. R. Nash, in Mid-Infrared Semiconductor Optoelectrics, Springer Ser. in Optical Sci., Ed. by A. Krier (London, Springer, 2006), pt. III, p. 453.CrossRefGoogle Scholar
  20. 20.
    M. J. Pullin, H. R. Hardaway, J. D. Heber, and C. C. Phillips, Appl. Phys. Lett. 75, 3437 (1999).CrossRefADSGoogle Scholar
  21. 21.
    L. J. Olafsen, I. Vurtgaftman, W. W. Bewley, C. L. Felix, E. H. Aifer, J. R. Meyer, J. R. Waterman, and W. Mason, Appl. Phys. Lett. 74, 2681 (1999).CrossRefADSGoogle Scholar
  22. 22.
    F. Marczinowskii, J. Wiebe, J.-M. Tang, M. E. Flatte, F. Meier, M. Morgenstern, and R. Wiesendanger, Phys. Rev. Lett. 99, 157202 (2007).CrossRefADSGoogle Scholar
  23. 23.
    G. G. Zegrya, M. P. Mikhailova, T. N. Danilova, A. N. Imenkov, K. D. Moiseev, V. V. Sherstnev, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn. 33, 351 (1999) [Semiconductors 33, 350 (1999)].Google Scholar
  24. 24.
    M. P. Mikhailova, I. A. Andreev, K. D. Moiseev, E. V. Ivanov, N. D. Stoyanov, Yu. P. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrac, K. Melichar, and T. Simecek, Proc. SPIE 7138, 713813 (2008).CrossRefGoogle Scholar
  25. 25.
    T. Ashley, J. G. Crowder, V. P. Mannheim, and S. D. Smith, PCT Patent Applicattion WO 00/02263 (Published Jan. 13, 2000).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. P. Mikhailova
    • 1
  • E. V. Ivanov
    • 1
  • K. D. Moiseev
    • 1
  • Yu. P. Yakovlev
    • 1
  • E. Hulicius
    • 2
  • A. Hospodkova
    • 2
  • J. Pangrac
    • 2
  • T. Šimeček
    • 2
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of PhysicsAcademy of Sciences of Czech RepublicPragueCzech Republic

Personalised recommendations