Semiconductors

, 43:1714 | Cite as

Nanotube-based three-dimensional albumin composite obtained using continuous laser radiation

  • S. A. Ageeva
  • I. I. Bobrinetskii
  • V. K. Nevolin
  • V. M. Podgaetskii
  • S. V. Selishchev
  • M. M. Simunin
  • V. I. Konov
  • V. V. Savranskii
Nanotechnology

Abstract

The possibility of developing three-dimensional nanostructures for damaged bone and tissue restoration, including treatment of human congenital malformation is considered. Four types of multiwalled and single-walled carbon nanotubes fabricated by chemical vapor deposition via disproportionation on Fe clusters and thermal cathode sputtering in an inert gas were studied. The nanomaterial’s topography was studied by atomic-force microscopy. The possibility of using 3D nanocomposites as a biosolder for laser biowelding of cartilaginous tissue was shown. The compatibility of biological tissues with a nanocomposite material in vivo introduced under the perichondrium of ear cartilage of a rabbit was validated.

References

  1. 1.
    T. Fukushima, A. Kosaka, Y. Ishumura, et al., Science 300(5628), 2072–2074 (2003).CrossRefADSGoogle Scholar
  2. 2.
    W. Dong, A. Cogbill, T. Zhang, et al., J. Phys. Chem. B 110, 16819–16822 (2006).CrossRefGoogle Scholar
  3. 3.
    É. G. Rakov, Nanotubes and Fullerens, the School-book (Universit. Kniga, Logos, Moscow, 2006) [in Russian].Google Scholar
  4. 4.
    G. M. Russotti and W. Harris, Orthopaedic Trans. 12, 901–906 (1988).Google Scholar
  5. 5.
    M. P. Mattson, R. C. Haddon, and A. M. Rao, J. Mol. Neurosci. 14(3), 175–182 (2000).CrossRefGoogle Scholar
  6. 6.
    L. P. Zanello, V. Zhao, N. Ni, and R. C. Naddon, Nano Lett. 6, 562–567 (2006).CrossRefADSGoogle Scholar
  7. 7.
    A. V. Tausenev, E. D. Obraztsova, A. S. Lobaz, et al., Kvant. Élektron. 37, 205–208 (2007) [Quantum Electron. 37, 205 (2007)].CrossRefGoogle Scholar
  8. 8.
    V. M. Podgaetskii, V. V. Savranskii, M. M. Simunin, and M. A. Kononov, Kvant. Élektron. 37, 801–803 (2007) [Quantum Electron. 37, 801 (2007)].CrossRefGoogle Scholar
  9. 9.
    N. I. Bobrinetskii, V. K. Nevolin, and M. M. Simunin, Khim. Tekhnol. 8(2), 58–63 (2007).Google Scholar
  10. 10.
    M. L. Shofner, V. N. Khabashesku, and E. V. Barrera, Chem. Mater. 18, 906–913 (2006).CrossRefGoogle Scholar
  11. 11.
    C. Journet, W. K. Maser, P. Bernier, et al., Nature 388(21), 56–58 (1997); www.nanocarblab.com.Google Scholar
  12. 12.
    M. V. P. Minaev, Kvant. Élektron. 35, 976–983 (2005) [Quantum Electron. 35, 976 (2005)].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • S. A. Ageeva
    • 1
  • I. I. Bobrinetskii
    • 2
  • V. K. Nevolin
    • 2
  • V. M. Podgaetskii
    • 2
  • S. V. Selishchev
    • 2
  • M. M. Simunin
    • 2
  • V. I. Konov
    • 3
  • V. V. Savranskii
    • 3
  1. 1.Laser Medicine CenterMoscowRussia
  2. 2.Moscow Institute of Electronic TechnologyZelenogradRussia
  3. 3.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations