Advertisement

Semiconductors

, 43:1539 | Cite as

Semiconductor nanowhiskers: Synthesis, properties, and applications

  • V. G. Dubrovskii
  • G. E. Cirlin
  • V. M. Ustinov
Review

Abstract

Recent results of studying the semiconductor’s whisker nanocrystals are reviewed. Physical grounds of growing whisker nanocrystals using the mechanism vapor-liquid-crystal are given and the main epitaxial technologies of synthesis of whisker nanocrystals are described. Thermodynamic and kinetic factors controlling the morphological properties, composition, and crystal structure of whisker nanocrystals are considered in detail. The main theoretical models of the growth and structure of whisker nanocrystals are described. The data on physical properties of whisker nanocrystals and possibilities of their use in nanophotonics, nanoelectronics, and nanobiotechnology are presented.

Keywords

GaAs Molecular Beam Epitaxy Triple Line Molecular Beam Epitaxy Method Whisker Nanocrystals 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Sakaki, Jpn. Appl. Phys. 19, L735 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).ADSCrossRefGoogle Scholar
  3. 3.
    E. I. Givargizov, Growth of Whiskers and Lamellar Crystals from Vapor (Nauka, Moscow, 1977) [in Russian].Google Scholar
  4. 4.
    P. M. Petroff, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 45, 620 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    R. Bhat, E. Kapon, S. Simhony, E. Colas, D. M. Hwang, N. G. Stoffel, and M. A. Koza, J. Cryst. Growth 107, 716 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, and M. Koguchi, J. Appl. Phys. 77, 447 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Cui and C. M. Lieber, Science 91, 851 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    G. Zheng, W. Lu, S. Jin, and C. M. Lieber, Adv. Mater. 16, 1890 (2004).CrossRefGoogle Scholar
  9. 9.
    A. B. Greytak, L. J. Lauhon, M. S. Gudiksen, and C. M. Lieber, Appl. Phys. Lett. 84, 4176 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Huang and C. M. Lieber, Pure Appl. Chem. 76, 2051 (2004).CrossRefGoogle Scholar
  11. 11.
    E. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C. M. Lieber, Proc. Natl. Acad. Sci. USA 101, 14017 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    R. S. Friedman, M. C. McAlpine, D. S. Ricketts, D. Ham, and C. M. Lieber, Nature 434, 1085 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, Nano Lett. 6, 1468 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, Appl. Phys. Lett. 87, 173111 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    F. Patolsky, G. F. Zheng, and C. M. Lieber, Anal. Chem. 78, 4260 (2006).CrossRefGoogle Scholar
  16. 16.
    O. Hayden, G. F. Zheng, P. Agarwal, and C. M. Lieber, Small 3, 2048 (2007).CrossRefGoogle Scholar
  17. 17.
    J. Xiang, W. Lu, Y. J. Hu, Y. Wu, H. Yan, and C. M. Lieber, Nature 441, 489 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    F. Patolsky, G. Zheng, and C. M. Lieber, Nanomedicine 1, 51 (2006).CrossRefGoogle Scholar
  19. 19.
    G. C. Liang, J. Xiang, N. Kharche, G. Klimeck, C. M. Lieber, and M. Lundstrom, Nano Lett. 7, 642 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    W. Lu and C. M. Lieber, Nature Mater. 6, 841 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    B. J. Ohlsson, M. T. Björk, M. H. Magnusson, K. Deppert, and L. Samuelson, Appl. Phys. Lett. 79, 3335 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Appl. Phys. Lett. 80, 1058 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    M. T. Bjork, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Appl. Phys. Lett. 81, 4458 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    B. J. Ohlsson, M. T. Bjork, A. I. Persson, C. Thelander, L. R. Wallenberg, M. H. Magnusson, K. Deppert, and L. Samuelson, Physica E 13, 1126 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    K. A. Dick, K. Deppert, M. W. Larsson, T. Martensson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Nature Mater. 3, 380 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Martensson, B. A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, Nature Mater. 5, 574 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    T. Bryllert, L. E. Wernersson, T. Lowgren, and L. Samuelson, Nanotechnology 17, S227 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, Nano Lett. 4, 699 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    W. Seifert, M. Borgstrom, K. Deppert, K. A. Dick, J. Johansson, M. W. Larsson, T. Martensson, N. Skold, C. P. T. Svensson, B. A. Wacaser, L. R. Wallenberg, and L. Samuelson, J. Cryst. Growth 272, 211 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    A. I. Persson, M. W. Larsson, S. Stengstrom, B. J. Ohlsson, L. Samuelson, and L. R. Wallenberg, Nature Mater. 3, 677 (2004).ADSCrossRefGoogle Scholar
  31. 31.
    C. Thelander, H. A. Nilsson, L. E. Jensen, and L. Samuelson, Nano Lett. 5, 635 (2005).ADSCrossRefGoogle Scholar
  32. 32.
    H. A. Nilsson, C. Thelander, L. E. Fröberg, J. B. Wagner, and L. Samuelson, Appl. Phys. Lett. 89, 163101 (2006).ADSCrossRefGoogle Scholar
  33. 33.
    K. A. Dick, K. Deppert, T. Martensson, S. Mandl, L. Samuelson, and W. Seifert, Nano Lett. 5, 761 (2005).ADSCrossRefGoogle Scholar
  34. 34.
    A. I. Persson, L. E. Fröberg, S. Jeppesen, M. T. Bjork, and L. Samuelson, J. Appl. Phys. 101, 034313 (2007).ADSCrossRefGoogle Scholar
  35. 35.
    D. Li, Y. Wu, P. Kim, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 3186 (2003).ADSCrossRefGoogle Scholar
  36. 36.
    D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).ADSCrossRefGoogle Scholar
  37. 37.
    A. I. Hochbaum, R. Fan, R. He, and P. Yang, Nano Lett. 5, 457 (2005).ADSCrossRefGoogle Scholar
  38. 38.
    P. J. Pauzauskie and P. Yang, Mater. Today 9(10), 36 (2006).CrossRefGoogle Scholar
  39. 39.
    M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. Yang, J. Phys. Chem. B 110, 22652 (2006).CrossRefGoogle Scholar
  40. 40.
    R. Fan and P. Yang, Nano. Lett. 6, 973 (2006).ADSCrossRefGoogle Scholar
  41. 41.
    P. Pauzauskie, D. Sirbuly, and P. Yang, Phys. Rev. Lett. 96, 143903 (2006).ADSCrossRefGoogle Scholar
  42. 42.
    Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, Nature 447, 1098 (2007).ADSCrossRefGoogle Scholar
  43. 43.
    C. Y. Zhi, X. D. Bai, and E. G. Wang, Appl. Phys. Lett. 86, 213108 (2005).ADSCrossRefGoogle Scholar
  44. 44.
    L. C. Chuang, M. Moewe, S. Crankshaw, C. Chase, N. P. Kobayashi, and C. Chang-Hasnain, Appl. Phys. Lett. 90, 043115 (2007).ADSCrossRefGoogle Scholar
  45. 45.
    L. E. Fröberg, W. Seifert, and J. Johansson, Phys. Rev. B 76, 153401 (2007).ADSCrossRefGoogle Scholar
  46. 46.
    L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F.M. Kolb, L. Long, U. Gösele, and T. Y. Tan, Appl. Phys. Lett. 84, 4968 (2004).ADSCrossRefGoogle Scholar
  47. 47.
    B. Fuhrmann, H. S. Leipner, H.-R. Hoche, L. Shubert, P. Werner, and U. Gösele, Nano Lett. 5, 2524 (2005).ADSCrossRefGoogle Scholar
  48. 48.
    A. A. Tonkikh, G. E. Cirlin, Yu. B. Samsonenko, I. P. Soshnikov, and V. M. Ustinov, Fiz. Tekh. Poluprovodn. 38, 1217 (2004) [Semiconductors 38, 1202 (2004)].Google Scholar
  49. 49.
    V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tonkikh, N. V. Sibirev, Yu. B. Samsonenko, and V. M. Ustinov, Phys. Rev. B 71, 205325 (2005).ADSCrossRefGoogle Scholar
  50. 50.
    G. E. Cirlin, V. G. Dubrovskii, N. V. Sibirev, I. P. Soshnikov, Yu. B. Samsonenko, A. A. Tonkikh, and V. M. Ustinov, Fiz. Tekh. Poluprovodn. 39, 587 (2005) [Semiconductors 39, 557 (2005)].Google Scholar
  51. 51.
    J. C. Harmand, G. Patriarche, N. Péré-Laperne, M.-N. Mérat-Combes, L. Travers, and F. Glas, Appl. Phys. Lett. 87, 203101 (2005).ADSCrossRefGoogle Scholar
  52. 52.
    J. C. Harmand, M. Tchernycheva, G. Patriarche, L. Travers, F. Glas, and G. Cirlin, J. Cryst. Growth 301–302, 853 (2007).CrossRefGoogle Scholar
  53. 53.
    A. A. Tonkikh, G. E. Cirlin, V. G. Dubrovskii, N. V. Sibirev, I. P. Soshnikov, Yu. B. Samsonenko, N. K. Polyakov, and V. M. Ustinov, Phys. Stat. Solidi A 203, 1365 (2006).ADSCrossRefGoogle Scholar
  54. 54.
    M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J.-C. Harmand, Le Si Dang, J. Renard, B. Gayral, L. Nevou, and F. Julien, Nanotechnology 18, 385306 (2007).ADSCrossRefGoogle Scholar
  55. 55.
    R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Lüth, Appl. Phys. Lett. 90, 123117 (2007).ADSCrossRefGoogle Scholar
  56. 56.
    R. Meijers, T. Richter, R. Calarco, T. Stoica, H. P. Bochem, M. Marso, and H. Lüth, J. Cryst. Growth 289, 381 (2006).ADSCrossRefGoogle Scholar
  57. 57.
    M. C. Plante and R. R. LaPierre, J. Cryst. Growth 286, 394 (2006).ADSCrossRefGoogle Scholar
  58. 58.
    G. E. Cirlin, A. A. Tonkikh, Yu. B. Samsonenko, I. P. Soshnikov, N. K. Polyakov, V. G. Dubrovskii, and V. M. Ustinov, Chechoslovak. J. Phys. 56, 13 (2006).ADSCrossRefGoogle Scholar
  59. 59.
    V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, G. E. Cirlin, and V. M. Ustinov, J. Cryst. Growth 289, 31 (2006).ADSCrossRefGoogle Scholar
  60. 60.
    I. P. Soshnikov, V. G. Dubrovskii, N. V. Sibirev, B. T. Barchenko, A. V. Vertekha, G. É. Tsyrlin, and V. M. Ustinov, Pis’ma Zh. Tekh. Fiz. 32(12), 28 (2006) [Tech. Phys. Lett. 32, 520 (2006)].Google Scholar
  61. 61.
    H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, Nano Lett. 4, 1247 (2004).ADSCrossRefGoogle Scholar
  62. 62.
    V. G. Dubrovskii, I. P. Soshnikov, G. E. Cirlin, A. A. Tonkikh, Yu. B. Samsonenko, N. V. Sibirev, and V. M. Ustinov, Phys. Stat. Solidi B 241, R30 (2004).ADSCrossRefGoogle Scholar
  63. 63.
    V. G. Dubrovskii and N. V. Sibirev, J. Cryst. Growth 304, 504 (2007).ADSCrossRefGoogle Scholar
  64. 64.
    T. Bryllert, L.-E. Wernersson, L. E. Froberg, and L. Samuelson, IEEE Electron. Rev. Lett. 27, 323 (2006).ADSCrossRefGoogle Scholar
  65. 65.
    G. E. Cirlin, M. Tchernycheva, C. Sartel, J. Patriarche, L. Vila, and J. C. Harmand, in Proc. of the 10th Intern. Symp. on Nanophysics and Nanoelectronics (IFM RAN, Nizh. Novgorod, 2007), p. 211.Google Scholar
  66. 66.
    M. Tchernycheva, L. Travers, G. Patriarche, J. C. Harmand, G. E. Cirlin, and V. G. Dubrovskii, J. Appl. Phys. 102, 094313 (2007).ADSCrossRefGoogle Scholar
  67. 67.
    Binary Alloy Phase Diagrams, 2nd ed., ed. by T. B. Massalski (ASM Int. Metals Park, Ohto, 1990) v. 1, p. 369.Google Scholar
  68. 68.
    V. V. Mamutin, Pis’ma Zh. Tekh. Fiz. 25(18), 55 (1999) [Tech. Phys. Lett. 25, 741 (1999)].Google Scholar
  69. 69.
    J. Noborisaka, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 86, 213102 (2005).ADSCrossRefGoogle Scholar
  70. 70.
    P. Mohan, J. Motohisa, and T. Fukui, Nanotechnology 16, 2903 (2005).ADSCrossRefGoogle Scholar
  71. 71.
    J. Noborisaka, J. Motohisa, S. Hara, and T. Fukui, Appl. Phys. Lett. 87, 093109 (2005).ADSCrossRefGoogle Scholar
  72. 72.
    J. Motohisa and T. Fukui, Proc. SPIE 6370, 63700B (2006).CrossRefGoogle Scholar
  73. 73.
    M. Akabori, J. Takeda, J. Motohisa, and T. Fukui, Nanotechnology 14, 1071 (2003).ADSCrossRefGoogle Scholar
  74. 74.
    M. Inari, J. Takeda, J. Motohisa, and T. Fukui, Physica E 21, 620 (2004).ADSCrossRefGoogle Scholar
  75. 75.
    E. I. Givargizov and A. A. Chernov, Kristallografiya 18, 147 (1973) [Sov. Phys. Crystallogr. 18, 89 (1973)].Google Scholar
  76. 76.
    V. G. Dubrovskii, N. V. Sibirev, and G. E. Cirlin, Pis’ma Zh. Tekh. Fiz. 30(16), 41 (2004) [Tech. Phys. Lett. 30, 682 (2004)].Google Scholar
  77. 77.
    V. G. Dubrovskii and N. V. Sibirev, Phys. Rev. E 70, 031604 (2004).ADSCrossRefGoogle Scholar
  78. 78.
    A. Zangwill, Physics at Surfaces (Cambridge Univ., Cambridge, 1988).Google Scholar
  79. 79.
    Landolt-Börnstein, New Series, Group III, v. 41, pt. A (Springer, Berlin, 2006); Group IV Elements, IVĐIV and IIIĐV Compounds, Ed. by U. Rössler.Google Scholar
  80. 80.
    D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth Heinemann, Oxford, 2000).Google Scholar
  81. 81.
    D. Kashchiev, Cryst. Growth Design 6, 1154 (2006).CrossRefGoogle Scholar
  82. 82.
    A. A. Chernov, E. I. Givargizov, and Kh. S. Bagdasarov, Modern Crystallography, vol. 3: Crystal Growth (Nauka, Moscow, 1980) [in Russian].Google Scholar
  83. 83.
    N. V. Sibirev and V. G. Dubrovskii, Pis’ma Zh. Tekh. Fiz. 30(18), 79 (2004) [Tech. Phys. Lett. 30, 791 (2004)].Google Scholar
  84. 84.
    V. G. Dubrovskii, N. V. Sibirev, J. C. Harmand, and F. Glas, Phys. Rev. B 78, 235301 (2008).ADSCrossRefGoogle Scholar
  85. 85.
    F. Glas, J. C. Harmand, and J. Patriarche, Phys. Rev. Lett. 99, 146101 (2007).ADSCrossRefGoogle Scholar
  86. 86.
    S. Koshiba, Y. Nakamura, M. Tsuchiya, H. Noge, H. Kano, Y. Nagamune, T. Noda, and H. Sakaki, J. Appl. Phys. 76, 4138 (1994).ADSCrossRefGoogle Scholar
  87. 87.
    T. Takebe, M. Fujii, T. Yamamoto, K. Fujita, and T. Watanabe, J. Appl. Phys. 81, 7273 (1997).ADSCrossRefGoogle Scholar
  88. 88.
    W. Dittmar and K. Neumann, in Growth and Perfection of Crystals, Ed. by R. H. Doremus, B. W. Roberts, and E. Turnball (Wiley, New York, 1958), p. 121.Google Scholar
  89. 89.
    J. M. Blakely and K. A. Jackson, J. Chem. Phys. 37, 428 (1962).ADSCrossRefGoogle Scholar
  90. 90.
    V. Ruth and J. R. Hirth, J. Chem. Phys. 41, 31 (1964).Google Scholar
  91. 91.
    V. G. Dubrovskii, N. V. Sibirev, R. A. Suris, G. E. Cirlin, V. M. Ustinov, M. Tchernycheva, and J. C. Harmand, Fiz. Tekh. Poluprovodn. 40, 1103 (2006) [Semiconductors 40, 1075 (2006)].Google Scholar
  92. 92.
    V. G. Dubrovskii, N. V. Sibirev, R. A. Suris, G. E. Cirlin, J. C. Harmand, and V. M. Ustinov, Surf. Sci. 601, 4395 (2007).ADSCrossRefGoogle Scholar
  93. 93.
    V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, I. P. Soshnikov, W. H. Chen, R. Larde, E. Cadel, P. Pareige, T. Xu, B. Grandidier, J.-P. Nys, D. Stievenard, M. Moewe, L. C. Chuang, and C. Chang-Hasnain, Phys. Rev. B 79, 205316 (2009).ADSCrossRefGoogle Scholar
  94. 94.
    J. Johansson, C. P. T. Svensson, T. Mårtensson, L. Samuelson, and W. Seifert, J. Phys. Chem. B 109, 13567 (2005).CrossRefGoogle Scholar
  95. 95.
    W. Miller and S. Succi, Phys. Rev. E 76, 031601 (2007).ADSCrossRefGoogle Scholar
  96. 96.
    V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, J. C. Harmand, and V. M. Ustinov, Phys. Rev. E 73, 021603 (2006).ADSCrossRefGoogle Scholar
  97. 97.
    M. T. Björk, B. J. Ohlsson, T. Saas, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Nano Lett. 2(2), 87 (2002).ADSCrossRefGoogle Scholar
  98. 98.
    L. C. Chuang, M. Moewe, S. Crankshaw, and C. Chang-Hasnain, Appl. Phys. Lett. 92, 013121 (2008).ADSCrossRefGoogle Scholar
  99. 99.
    V. M. Ustinov, A. E. Zhukov, A. Yu. Egorov, and N. A. Maleev, Quantum Dot Lasers (Oxford Univ., New York, 2003).Google Scholar
  100. 100.
    F. Glas, Phys. Rev. B 74, 121302 (2006).ADSCrossRefGoogle Scholar
  101. 101.
    M. V. Barton, J. Appl. Mech. 8, A97 (1941).MathSciNetGoogle Scholar
  102. 102.
    E. A. Fitzgerald, Mater. Sci. Rep. 7, 87 (1991).CrossRefGoogle Scholar
  103. 103.
    I. A. Ovid’ko, Phys. Rev. Lett. 88, 046103 (2002).ADSCrossRefGoogle Scholar
  104. 104.
    B. J. Spencer and J. Tersoff, Appl. Phys. Lett. 77, 2633 (2000).CrossRefGoogle Scholar
  105. 105.
    C. P. T. Swensson, W. Seifert, M. W. Larsson, L. R. Wallenberg, J. Strangl, G. Bauer, and L. Samuelson, Nanotechnology 16, 936 (2005).ADSCrossRefGoogle Scholar
  106. 106.
    M. A. Verheijen, G. Immink, T. de Smet, M. T. Borgstrom, and E. P. A. M. Bakkers, J. Am. Chem. Soc. 128, 1353 (2006).CrossRefGoogle Scholar
  107. 107.
    E. Ertekin, P. A. Greaney, and D. C. Chrzan, J. Appl. Phys. 97, 114325 (2005).ADSCrossRefGoogle Scholar
  108. 108.
    M. I. McMahon and R. J. Nelmes, Phys. Rev. Lett. 95, 215505 (2005).ADSCrossRefGoogle Scholar
  109. 109.
    T. Akiyama, K. Sano, K. Nakamura, and T. Ito, Jpn. J. Appl. Phys. 45, L275 (2006).ADSCrossRefGoogle Scholar
  110. 110.
    C.-Y. Yeh, Z. W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B 46, 10086 (1992).ADSCrossRefGoogle Scholar
  111. 111.
    I. P. Soshnikov, G. E. Cirlin, A. A. Tonkikh, Yu. B. Samsonenko, V. G. Dubrovskii, V. M. Ustinov, O. M. Gorbenko, D. Litvinov, and D. Gerthsen, Fiz. Tverd. Tela 47, 2121 (2005) [Phys. Solid State 47, 2213 (2005)].Google Scholar
  112. 112.
    S.-G. Ihn, J.-I. Song, Y.-H. Kim, and J. Y. Lee, Appl. Phys. Lett. 89, 053106 (2006).ADSCrossRefGoogle Scholar
  113. 113.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).Google Scholar
  114. 114.
    A. Fontcuberta i Morral, J. Arbiol, J. D. Prades, A. Cirera, and J. R. Morante, Adv. Mater. 19, 1347 (2007).CrossRefGoogle Scholar
  115. 115.
    I. P. Soshnikov, G. E. Cirlin, N. V. Sibirev, V. G. Dubrovskii, Yu. B. Samsonenko, D. Litvinov, and D. Gerthsen, Pis’ma Zh. Tekh. Fiz. 34(12), 88 (2008) [Tech. Phys. Lett. 34, 538 (2008)].Google Scholar
  116. 116.
    T. Akiyama, K. Nakamura, and T. Ito, Phys. Rev. B 73, 235308 (2006).ADSCrossRefGoogle Scholar
  117. 117.
    R. Leitsmann and F. Bechstedt, J. Appl. Phys. 102, 063528 (2007).ADSCrossRefGoogle Scholar
  118. 118.
    V. G. Dubrovskii and N. V. Sibirev, Phys. Rev. B 77, 035414 (2008).ADSCrossRefGoogle Scholar
  119. 119.
    I. T. Steinberger, Progr. Cryst. Growth Charact. 7, 7 (1983).CrossRefGoogle Scholar
  120. 120.
    C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. Fontcuberta i Morral, Phys. Rev. B 77, 155326 (2008).ADSCrossRefGoogle Scholar
  121. 121.
    D. J. Eaglesham, A. E. White, L. C. Feldman, N. Moriya, and D. C. Jacobson, Phys. Rev. Lett. 70, 1643 (1993).ADSCrossRefGoogle Scholar
  122. 122.
    A. A. Stekolnikov and F. Bechstedt, Phys. Rev. B 72, 125326 (2005).ADSCrossRefGoogle Scholar
  123. 123.
    V. G. Dubrovskii and N. V. Sibirev, Pis’ma Zh. Tekh. Fiz. 32(5), 1 (2006) [Tech. Phys. Lett. 32, 185 (2006)].Google Scholar
  124. 124.
    S. A. Kukushkin and A. V. Osipov, Usp. Fiz. Nauk 168, 1083 (1998) [Phys. Usp. 41, 983 (1998)].CrossRefGoogle Scholar
  125. 125.
    V. G. Dubrovskii and G. E. Cirlin, Fiz. Tekh. Poluprovodn. 39, 1312 (2005) [Semiconductors 39, 1267 (2005)].Google Scholar
  126. 126.
    V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, M. Tchernycheva, J. C. Harmand, and V. M. Ustinov, Phys. Rev. E 77, 031606 (2008).ADSCrossRefGoogle Scholar
  127. 127.
    N. V. Sibirev, I. P. Soshnikov, and V. G. Dubrovskii, E. Arshanskii, Pis’ma Zh. Tekh. Fiz. 32(7), 28 (2006) [Tech. Phys. Lett. 32, 520 (2006)].Google Scholar
  128. 128.
    F. Glas and J. C. Harmand, Phys. Rev. B 73, 155320 (2006).ADSCrossRefGoogle Scholar
  129. 129.
    A. T. Galisultanov, I. A. Fedorov, I. P. Soshnikov, N. V. Sibirev, and V. G. Dubrovskii, Pis’ma Zh. Tekh. Fiz. 34(12), 34 (2008) [Tech. Phys. Lett. 34, 512 (2008)].Google Scholar
  130. 130.
    M. Borgström, K. Deppert, L. Samuelson, and W. Seifert, J. Cryst. Growth 260, 18 (2004).ADSCrossRefGoogle Scholar
  131. 131.
    F. M. Ross, J. Tersoff, and M. C. Reuter, Phys. Rev. Lett. 95, 146104 (2005).ADSCrossRefGoogle Scholar
  132. 132.
    E. I. Givargizov, J. Cryst. Growth 31, 20 (1975).ADSCrossRefGoogle Scholar
  133. 133.
    H. Z. Zhang, D. P. Yu, Y. Ding, Z. G. Bai, Q. L. Hang, and S. Q. Feng, Appl. Phys. Lett. 73, 3396 (1998).ADSCrossRefGoogle Scholar
  134. 134.
    F. M. Kolb, H. Hofmeister, R. Scholz, M. Zacharias, U. Gosele, D. D. Ma, and S.-T. Lee, J. Electrochem. Soc. 151, G472 (2004).CrossRefGoogle Scholar
  135. 135.
    J. B. Hannon, S. Kodambaka, F. M. Ross, and R.M. Tromp, Nature 440(2), 69 (2006).ADSCrossRefGoogle Scholar
  136. 136.
    H. Y. Peng, N. Wang, W. S. Shi, Y. F. Zhang, C. S. Lee, and S. T. Lee, J. Appl. Phys. 89, 727 (2001).ADSCrossRefGoogle Scholar
  137. 137.
    M. Moewe, L. C. Chuang, V. G. Dubrovskii, and C. Chang-Hasnain, J. Appl. Phys. 104, 044313 (2008).ADSCrossRefGoogle Scholar
  138. 138.
    K. Haraguchi, T. Katsuyama, and K. Hiruma, J. Appl. Phys. 75, 4220 (1994).ADSCrossRefGoogle Scholar
  139. 139.
    Z. H. Wu, M. Sun, X. Y. Mei, and H. E. Ruda, Appl. Phys. Lett. 85, 657 (2004).ADSCrossRefGoogle Scholar
  140. 140.
    S. Reitzenstain, S. Muench, C. Hoffmann, A. Forchel, S. Crankshow, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, Appl. Phys. Lett. 91, 091103 (2007).ADSCrossRefGoogle Scholar
  141. 141.
    M. S. Gudiksen, J. Wang, and C. Lieber, J. Phys. Chem. B 106, 4036 (2002).CrossRefGoogle Scholar
  142. 142.
    M. Mattila, T. Hakkarainen, H. Lipsanen, H. Jiang, and E. I. Kauppinen, Appl. Phys. Lett. 89, 063119 (2006).ADSCrossRefGoogle Scholar
  143. 143.
    Yu. B. Samsonenko, G. E. Cirlin, V. A. Egorov, N. K. Polyakov, V. P. Ulin, and V. G. Dubrovskii, Fiz. Tekh. Poluprovodn. 42, 1478 (2008) [Semiconductors 42, 1445 (2008)].Google Scholar
  144. 144.
    M. Tchernycheva, G. E. Cirlin, G. Patriarche, L. Travers, V. Zwiller, U. Perinetti, and J.-C. Harmand, Nano Lett. 7, 1500 (2007).ADSCrossRefGoogle Scholar
  145. 145.
    T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Suttr, and H. Lüth, Nano Lett. 6, 1541 (2007).ADSCrossRefGoogle Scholar
  146. 146.
    Y. S. Park, S.-H. Lee, J.-E. Ob, C.-M. Park, and T.-W. Kang, J. Cryst. Growth 282, 313 (2005).ADSCrossRefGoogle Scholar
  147. 147.
    B. Peichal, J. Yoo, A. Elshaer, A. Che Mofor, G.-C. Yi, A. Bakin, A. Waag, F. Donatini, and Le Si Dang, Phys. Stat. Solidi B 244, 1458 (2007).CrossRefGoogle Scholar
  148. 148.
    O. A. Neucheva, A. A. Evstrapov, Yu. B. Samsonenko, and G. E. Cirlin, Pis’ma Zh. Tekh. Fiz. 33(21), 56 (2007) [Tech. Phys. Lett. 33, 923 (2007)].Google Scholar
  149. 149.
    C. J. Novotny, E. T. Yu, and P. K. L. Yu, Nano Lett. 8, 775 (2008).ADSCrossRefGoogle Scholar
  150. 150.
    S. H. Park, S.-H. Kim, and S.-W. Han, Nanotechnology 18, 055608 (2007).ADSCrossRefGoogle Scholar
  151. 151.
    E. D. Minot, F. Kelkensberg, M. van Kouwen, J. A. van Dam, L. P. Kouwenhoven, V. Zwiller, M. T. Borgstrom, O. Wunnicke, M. A. Verheijen, and E. P. A. M. Bakkers, Nano Lett. 7, 367 (2007).ADSCrossRefGoogle Scholar
  152. 152.
    M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Wever, R. Russo, and P. Yang, Science 292, 1897 (2001).ADSCrossRefGoogle Scholar
  153. 153.
    X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature (London) 421, 17 (2003).CrossRefGoogle Scholar
  154. 154.
    C. Ellstrom, W. Seifert, C. Pryor, L. Samuelson, and M.-E. Pistol, J. Phys.: Condens. Matter 19, 295211 (2007).CrossRefGoogle Scholar
  155. 155.
    H.-J. Kim, C.-H. Lee, D.-W. Kim, and G. Chul, Nanotechnology 17, S327 (2006).ADSCrossRefGoogle Scholar
  156. 156.
    A. D. Bouravleuv, K. Minami, T. Ishibashi, and K. Sato, Phys. Stat. Solidi A 203, 2793 (2006).ADSCrossRefGoogle Scholar
  157. 157.
    A. D. Bouravleuv, S. Mitani, Re. M. Rubinger, M. C. do Carmo, N. A. Sobolev, T. Ishibashi, A. Koukitu, K. Takanashi, and K. Sato, Physica E 40, 2037 (2008).ADSCrossRefGoogle Scholar
  158. 158.
    J. Sadowski, P. Dluzewski, S. Kret, E. Janik, E. Lusakowska, J. Kanski, A. Presz, F. Terki, S. Charar, and D. Tang, Nano Lett. 7, 2724 (2007).ADSCrossRefGoogle Scholar
  159. 159.
    Q. Wan, P. Feng, and T. H. Wang, Appl. Phys. Lett. 89, 123102 (2006).ADSCrossRefGoogle Scholar
  160. 160.
    C.-Y. Lee, M.-P. Lu, K.-F. Liao, W.-W. Wu, and L.-J. Chen, Appl. Phys. Lett. 93, 113109 (2008).ADSCrossRefGoogle Scholar
  161. 161.
    B. Zeng, G. Xiong, S. Chen, W. Wang, D. Z. Wang, and Z. F. Ren, Appl. Phys. Lett. 90, 033112 (2007).ADSCrossRefGoogle Scholar
  162. 162.
    L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, Appl. Phys. Lett. 91, 233117 (2007).ADSCrossRefGoogle Scholar
  163. 163.
    W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295, 2425 (2002).ADSCrossRefGoogle Scholar
  164. 164.
    M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nature Mater. 4, 455 (2005).ADSCrossRefGoogle Scholar
  165. 165.
    J. B. Baxter and E. S. Aydil, Appl. Phys. Lett. 86, 053114 (2005).ADSCrossRefGoogle Scholar
  166. 166.
    J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, Nanotechnology 17, S304 (2006).ADSCrossRefGoogle Scholar
  167. 167.
    J. A. Czaban, D. A. Thompson, and R. R. LaPierre, Nano Lett. 9, 148 (2009).ADSCrossRefGoogle Scholar
  168. 168.
    A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, Science 285, 692 (1999).CrossRefGoogle Scholar
  169. 169.
    M. A. Green, in Proc. of the 4th World Conf. Photovoltaic Energy Conversion (2006), v. 1, p. 15.ADSCrossRefGoogle Scholar
  170. 170.
    A. Luque, A. Marti, and A. J. Nozik, MRS Bull. 32, 236 (2007).Google Scholar
  171. 171.
    R. D. Schaller, V. M. Agranovich, and V. I. Klimov, Nature Phys. 1, 189 (2005).ADSCrossRefGoogle Scholar
  172. 172.
    L. Hu and G. Chen, Nano Lett. 7, 3249 (2007).ADSCrossRefGoogle Scholar
  173. 173.
    E. Strauss, J. Strauss, and E. G. Strauss, in Viruses and Human Disease, Ed. by J. Strauss and E. Strauss (Academic, San Diego, 2001), p. 1.Google Scholar
  174. 174.
    Essentials of Diagnostic Virology, ed. by G. A. Storch (ChurchillDLivingstone, New York, 1999), p. 1.Google Scholar
  175. 175.
    E. M. Elnifro, A. M. Ashshi, R. J. Cooper, and P. E. Klapper, Clin. Microbiol. Rev. 13, 559 (2000).CrossRefGoogle Scholar
  176. 176.
    I. M. Mackay, K. E. Arden, and A. Nitsche, Nucleic Acids Res. 30, 1292 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. G. Dubrovskii
    • 1
    • 2
  • G. E. Cirlin
    • 1
    • 2
    • 3
  • V. M. Ustinov
    • 1
    • 2
  1. 1.St. Petersburg Physics and Technology Center for Research and EducationRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Institute for Analytical InstrumentationRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations