Advertisement

Semiconductors

, 43:1499 | Cite as

Effect of the electric field on the intensity and spectrum of emission from InGaN/GaN quantum wells

  • N. I. Bochkareva
  • A. L. Bogatov
  • R. I. Gorbunov
  • F. E. Latyshev
  • A. S. Zubrilov
  • A. I. Tsyuk
  • A. V. Klochkov
  • Y. S. Lelikov
  • Y. T. Rebane
  • Y. G. ShreterEmail author
Physics of Semiconductor Devices

Abstract

Comparative study of the photoluminescence (PL) from quantum wells (QWs) in forward-biased p-GaN/InGaN/n-GaN structures and electroluminescence from these structures has been carried out. It is shown that, upon application of a forward bias, a characteristic red shift of the spectral peak is observed, together with a broadening of the PL line and simultaneous burning-up of the PL. This results from a decrease in the field strength in the space charge region of the p-n junction and suppression of the tunneling leakage of the carrier from band-tail states in the active InGaN layer. An analysis of the results obtained demonstrated that the tunneling strongly affects the quantum efficiency and enabled evaluation of the internal quantum efficiency of the structures. It is shown that nonequilibrium population of band-tail states in InGaN/GaN QWs depends on the injection type and is controlled by the capture of carriers injected into a QW, in the case of optical injection, and by carrier tunneling “below” the QW under electrical injection.

PACS numbers

73.40.Kp 73.63.Hs 78.55.Cr 78.60.Fi 78.67.Dc 85.60.Jb 

References

  1. 1.
    T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 36, L382 (1997).CrossRefADSGoogle Scholar
  2. 2.
    S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).CrossRefADSGoogle Scholar
  3. 3.
    S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, and T. Taguchi, Appl. Phys. Lett. 83, 4906 (2003).CrossRefADSGoogle Scholar
  4. 4.
    M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).CrossRefADSGoogle Scholar
  5. 5.
    A. Hangleiter, D. Fuhrmann, M. Grewe, F. Hitzel, G. Klewer, S. Lahmann, C. Netzel, N. Reidel, and U. Rossow, Phys. Stat. Solidi A 201, 2808 (2004).CrossRefADSGoogle Scholar
  6. 6.
    F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).CrossRefADSGoogle Scholar
  7. 7.
    T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, and I. Akasaki, Appl. Phys. Lett. 73, 1691 (1998).CrossRefADSGoogle Scholar
  8. 8.
    Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, Appl. Phys. Lett. 79, 1130 (2001).CrossRefADSGoogle Scholar
  9. 9.
    K. C. Kim, M. C. Schmidt, H. Sato, F. Wu, N. Fellows, Z. Jia, M. Saito, S. Nakamura, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 91, 181120 (2007).CrossRefADSGoogle Scholar
  10. 10.
    U. Jahn, S. Dhar, M. Ramsteiner, and K. Fujiwara, Phys. Rev. B 69, 115323 (2004).CrossRefADSGoogle Scholar
  11. 11.
    O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, J. Phys.: Condens. Matter 14, 3399 (2002).CrossRefADSGoogle Scholar
  12. 12.
    H. Morkoč, R. Cingolani, and B. Gil, Solid State Electron. 43, 1753 (1999).Google Scholar
  13. 13.
    H. C. Casey, Jr. J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).CrossRefADSGoogle Scholar
  14. 14.
    P. G. Eliseev, P. Perlin, J. Lee, and M. Osinskim, Appl. Phys. Lett. 71, 569 (1997).CrossRefADSGoogle Scholar
  15. 15.
    R. W. Martin, P. G. Middleton, E. P. O’Donnell, and W. van der Stricht, Appl. Phys. Lett. 74, 263 (1999).CrossRefADSGoogle Scholar
  16. 16.
    K. P. O’Donnell, R. W. Martin, and P. G. Middleton, Phys. Rev. Lett. 82, 237 (1999).CrossRefADSGoogle Scholar
  17. 17.
    N. I. Bochkareva, D. V. Tarkhin, Yu. T. Rebane, R. I. Gorbunov, Yu. S. Lelikov, I. A. Martynov, and Yu. G. Shreter, Fiz. Tekh. Poluprovodn. 41, 88 (2007) [Semiconductors 41, 87 (2007)].Google Scholar
  18. 18.
    Y. T. Rebane, N. I. Bochkareva, V. E. Bougrov, D. V. Tarkhin, Y. G. Shreter, E. A. Girnov, S. I. Stepanov, W. N. Wang, P. T. Chang, and P. J. Wang, Proc. SPIE 4996, 113 (2003).CrossRefGoogle Scholar
  19. 19.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Moscow, Nauka, 1989; Pergamon, New York, 1977), p. 220.Google Scholar
  20. 20.
    Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, Y. Narukawa, T. Mukai, and S. Fujita, J. Phys.: Condens. Matter 13, 6993 (2001).CrossRefADSGoogle Scholar
  21. 21.
    N. I. Bochkareva, E. A. Zhirnov, A. A. Efremov, Yu. T. Rebane, R. I. Gorbunov, and Yu. G. Shreter, Fiz. Tekh. Poluprovodn. 39, 627 (2005) [Semiconductors 39, 594 (2005)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • N. I. Bochkareva
    • 1
  • A. L. Bogatov
    • 1
  • R. I. Gorbunov
    • 1
  • F. E. Latyshev
    • 2
  • A. S. Zubrilov
    • 1
  • A. I. Tsyuk
    • 1
  • A. V. Klochkov
    • 1
  • Y. S. Lelikov
    • 1
  • Y. T. Rebane
    • 1
  • Y. G. Shreter
    • 1
    Email author
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Fock Research Institute of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations