Advertisement

Semiconductors

, Volume 43, Issue 7, pp 865–871 | Cite as

Au-TiB x -n-6H-SiC Schottky barrier diodes: Specific features of charge transport in rectifying and nonrectifying contacts

  • O. A. Ageev
  • A. E. Belyaev
  • N. S. Boltovets
  • V. N. Ivanov
  • R. V. KonakovaEmail author
  • Ya. Ya. Kudryk
  • P. M. Lytvyn
  • V. V. Milenin
  • A. V. Sachenko
Semiconductor Structures, Interfaces, and Surfaces

Abstract

Mechanism of charge transport in a diode of a silicon carbide’s Schottky barrier formed by a quasi-amorphous interstitial phase TiB x on the surface of n-6H-SiC (0001) single crystals with an uncompensated donor (nitrogen) concentration of ∼1018 cm−3 and dislocation density of ∼(106–108) cm−2 has been studied. It is demonstrated that, at temperatures T ≲ 400 K, the charge transport is governed by the tunneling current along dislocations intersecting the space charge region. At T > 400 K, the mechanism of charge transport changes to a thermionic mechanism with a barrier height of ∼0.64 eV and ideality factor close to 1.3.

PACS numbers

73.25.+y 73.40.Cg 74.40.Ei 73.40.Gk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Pikus, Foundations of the Theory of Semiconductor Devices (Nauka, Moscow, 1965) [in Russian].Google Scholar
  2. 2.
    A. Milnes and D. Feught, Heterojunctions and Metal-Semiconductor Junctions (Academic Press, New York,. 1972; Mir, Moscow, 1975).Google Scholar
  3. 3.
    V. I. Strikha, Theoretical Foundations of the Operation of Metal-Semiconductor Contact (Naukova dumka, Kiev, 1974) [in Russian].Google Scholar
  4. 4.
    E. H. Roderick and R. H. Williams, Metal-Semiconductor Contacts (Clarendon, Oxford, 1988; Radio i svyaz’, Moscow, 1982).Google Scholar
  5. 5.
    S. V. Bulyarskii and N. S. Glushko, Physical Principles of Functional Diagnostics of p-n Junctions with Defects (Shtiintsa, Kishinev, 1992) [in Russian].Google Scholar
  6. 6.
    A. A. Chernyshev, Foundations of Reliability of Semiconductor. Devices and Integrated Circuits (Radio i svyaz’, Moscow, 1988) [in Russian].Google Scholar
  7. 7.
    V. V. Evstropov, Yu. V. Zhilyaev, M. Dzhumaeva, and N. Nazarov, Fiz. Tekh. Poluprovodn. 31, 152 (1997) [Semiconductors 31, 115 (1997)].Google Scholar
  8. 8.
    V. V. Evstropov, Yu. V. Zhilyaev, M. Dzhumaeva, N. Nazarov, A. A. Sitnikova, and L. M. Fedorov, Fiz. Tekh. Poluprovodn. 34, 1357 (2000) [Semiconductors 34, 1305 (2000)].Google Scholar
  9. 9.
    T. V. Blank, Yu. A. Gol’dberg, O. V. Konstantinov, V. G. Nikitin, and E. A. Posse, Pis’ma Zh. Tekh. Fiz. 30(19), 17 (2004) [Tech. Phys. Lett. 30, 806 (2004)].Google Scholar
  10. 10.
    T. V. Blank, Yu. A. Gol’dberg, O. V. Konstantinov, V. G. Nikitin, and E. A. Posse, Fiz. Tekh. Poluprovodn. 40, 1204 (2006) [Semiconductors 40, 1173 (2006)].Google Scholar
  11. 11.
    T. V. Blank and Yu. A. Gol’dberg, Fiz. Tekh. Poluprovodn. 41, 1281 (2007) [Semiconductors 41, 1263 (2007)].Google Scholar
  12. 12.
    V. V. Evstropov and A. M. Strel’chuk, Fiz. Tekh. Poluprovodn. 30, 92 (1996) [Semiconductors 30, 52 (1996)].Google Scholar
  13. 13.
    S. Zh. Karazhanov, I. G. Atabaev, T. M. Saliev, É. V. Kanaki, and E. Dzhaksimov, Fiz. Tekh. Poluprovodn. 35, 75 (2001) [Semiconductors 35, 77 (2001)].Google Scholar
  14. 14.
    P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolany, H. Morkoc, and R. J. Molnar, Appl. Phys. Lett. 77, 3532 (2000).CrossRefADSGoogle Scholar
  15. 15.
    X. A. Cao and S. D. Arthur, Appl. Phys. Lett. 85, 3571 (2004).Google Scholar
  16. 16.
    X. A. Cao, L. M. Teetsov, M. P. D’Evelyn, D. W. Merfeld, and C. H. Jan, Appl. Phys. Lett. 85, 7 (2004).CrossRefADSGoogle Scholar
  17. 17.
    J. F. Barbot, C. Blanchard, and J. L. Demenet, Phys. Stat. Solidi B 222, 159 (2000).CrossRefADSGoogle Scholar
  18. 18.
    V. L. Litvinov, K. D. Demakov, O. A. Ageev, A. M. Svetlichnyi, R. V. Konakova, P. M. Lytvyn, and V. V. Milenin, Mater. Sci. Forum 389–393, 905 (2002).CrossRefGoogle Scholar
  19. 19.
    V. L. Litvinov, K. D. Demakov, O. A. Ageev, A. M. Svetlichnyi, R. V. Konakova, P. M. Litvin, O. S. Litvin, and V. V. Milenin, Fiz. Tekh. Poluprovodn. 37, 473 (2003) [Semiconductors 37, 456 (2003)].Google Scholar
  20. 20.
    M. É. Raikh and I. I. Ruzin, Fiz. Tekh. Poluprovodn. 19, 1217 (1985) [Sov. Phys. Semicond. 19, 745 (1985)].Google Scholar
  21. 21.
    T. T. Mnatsakanov, L. I. Pomortseva, and S. N. Yurkov, Fiz. Tekh. Poluprovodn. 35, 406 (2001) [Semiconductors 35, 394 (2001)].Google Scholar
  22. 22.
    M. V. Alekseenko, A. G. Zabrodskii, and M. P. Timofeev, Pis’ma Zh. Tekh. Fiz. 11(16), 1018 (1985) [Sov. Tech. Phys. Lett. 11, 422 (1985)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • O. A. Ageev
    • 1
  • A. E. Belyaev
    • 2
  • N. S. Boltovets
    • 3
  • V. N. Ivanov
    • 3
  • R. V. Konakova
    • 2
    Email author
  • Ya. Ya. Kudryk
    • 2
  • P. M. Lytvyn
    • 2
  • V. V. Milenin
    • 2
  • A. V. Sachenko
    • 2
  1. 1.Taganrog Technological Institute of the Southern Federal UniversityTaganrogRussian Federation
  2. 2.V. Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKievUkraine
  3. 3.State Enterprise Research Institute “Orion”KievUkraine

Personalised recommendations