Advertisement

Semiconductors

, Volume 43, Issue 1, pp 112–116 | Cite as

Selection of modes in transverse-mode waveguides for semiconductor lasers based on asymmetric heterostructures

  • S. O. SlipchenkoEmail author
  • A. D. Bondarev
  • D. A. Vinokurov
  • D. N. Nikolaev
  • N. V. Fetisova
  • Z. N. Sokolova
  • N. A. Pikhtin
  • I. S. Tarasov
Physics of Semiconductor Devices

Abstract

Asymmetric Al0.3Ga0.7As/GaAs/InGaAs heterostructures with a broadened waveguide produced by the method of MOCVD epitaxy are studied. It is established that the precision shift of the active region to one of the cladding layers ensures the generation of the chosen mode of high order in the transverse broadened waveguide. It is experimentally established that this shift brings about an increase in internal optical losses and a decrease in the internal quantum efficiency of stimulated emission. It is shown experimentally that the shift of the active region to the n-type cladding layer governs the sublinear form of the power-current characteristic for semiconductor lasers; in the case of a shift of the active region towards the p-type cladding layer, the laser diodes demonstrated a linear dependence of optical power on the pump current in the entire range of pump currents.

PACS numbers

42.55.Px 79.60.Jv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, et al., Fiz. Tekh. Poluprovodn. 38, 1477 (2004) [Semiconductors 38, 1430 (2004)].Google Scholar
  2. 2.
    D. A. Vinokurov, A. L. Stankevich, V. V. Shamakhov, et al., Fiz. Tekh. Poluprovodn. 40, 764 (2006) [Semiconductors 40, 745 (2006)].Google Scholar
  3. 3.
    A. V. Murashova, D. A. Vinokurov, N. A. Pikhtin, et al., Fiz. Tekh. Poluprovodn. 42, 882 (2007) [Semiconductors 42, 862 (2008)].Google Scholar
  4. 4.
    A. A. Biryukov, B. N. Zvonkov, S. M. Nekorkin, et al., Fiz. Tekh. Poluprovodn. 42, 361 (2008) [Semiconductors 42, 354 (2008)].Google Scholar
  5. 5.
    V. Ya. Aleshkin, B. N. Zvonkov, S. M. Nekorkin, and Vl. V. Kocharovskii, Fiz. Tekh. Poluprovodn. 39, 171 (2005) [Semiconductors 39, 156 (2005)].Google Scholar
  6. 6.
    V. Ya. Aleshkin, A. A. Afonenko, and N. B. Zvonkov, Fiz. Tekh. Poluprovodn. 35, 1256 (2001) [Semiconductors 35, 1203 (2001)].Google Scholar
  7. 7.
    A. Yu. Leshko, A. V. Lyutetsky, N. A. Pikhtin, et al., Fiz. Tekh. Poluprovodn. 36, 1393 (2002) [Semiconductors 36, 1308 (2002)].Google Scholar
  8. 8.
    B. S. Ryvkin and E. A. Avrutin, J. Appl. Phys. 97, 123 103 (2005).Google Scholar
  9. 9.
    B. S. Ryvkin and E. A. Avrutin, J. Appl. Phys. 97, 113 106 (2005).Google Scholar
  10. 10.
    L. V. Asryan and S. Luryi, IEEE J. Quant. Electron. 40, 833 (2004).CrossRefADSGoogle Scholar
  11. 11.
    S. O. Slipchenko, Z. N. Sokolova, N. A. Pikhtin, et al., Fiz. Tekh. Poluprovodn. 40, 1017 (2006) [Semiconductors 40, 990 (2006)].Google Scholar
  12. 12.
    D. Z. Garbuzov, A. V. Ovchinnikov, N. A. Pikhtin, et al., Fiz. Tekh. Poluprovodn. 25, 928 (1991) [Sov. Phys. Semicond. 25, 560 (1991)].Google Scholar
  13. 13.
    D. A. Vinokurov, S. A. Zorina, V. A. Kapitonov, et al., Fiz. Tekh. Poluprovodn. 39, 388 (2005) [Semiconductors 39, 370 (2005)].Google Scholar
  14. 14.
    H. C. Casey and M. B. Panish, Heterostructure Lasers (Academic Press, New York, San Francisco, London, 1978).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • S. O. Slipchenko
    • 1
    Email author
  • A. D. Bondarev
    • 1
  • D. A. Vinokurov
    • 1
  • D. N. Nikolaev
    • 1
  • N. V. Fetisova
    • 1
  • Z. N. Sokolova
    • 1
  • N. A. Pikhtin
    • 1
  • I. S. Tarasov
    • 1
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations