Advertisement

Semiconductors

, Volume 42, Issue 11, pp 1355–1361 | Cite as

Optical properties of blue light-emitting diodes in the InGaN/GaN system at high current densities

  • N. I. BochkarevaEmail author
  • R. I. Gorbunov
  • A. V. Klochkov
  • Yu. S. Lelikov
  • I. A. Martynov
  • Yu. T. Rebane
  • A. S. Belov
  • Yu. G. Shreter
Physics of Semiconductor Devices

Abstract

The current-voltage and brightness-voltage characteristics and the electroluminescence spectra of blue InGaN/GaN-based light-emitting diodes are studied to clarify the cause of the decrease in the emission efficiency at high current densities and high temperatures. It is found that the linear increase in the emission intensity with increasing injection current changes into a sublinear increase, resulting in a decrease in efficiency as the observed photon energy shifts from the mobility edge. The emission intensity decreases with increasing temperature when the photon energy approaches the mobility edge; this results in the reduction in efficiency on overheating. With increasing temperature, the peak of the electroluminescence spectrum shifts to lower photon energies because of the narrowing of the band gap. The results are interpreted taking into account the fact that the density-of-states tails in InGaN are filled not only via trapping of free charge carriers, but also via tunneling transitions into the tail states. The decrease in the emission efficiency at high currents is attributed to the suppression of tunneling injection and the enhancement of losses via the nonradiative recombination channel “under” the quantum well.

PACS numbers

73.40.Kp 73.63.Hs 78.55.Cr 78.60.Fi 78.67.De 85.60.Jb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, Ed. by S. Nakamura and S. F. Chichibu (Taylor and Francis, London, New York, 2000).Google Scholar
  2. 2.
    T. Mukai, M. Yamada, and S. Nakamura, Jap. J. Appl. Phys. 38, 3976 (1999).CrossRefGoogle Scholar
  3. 3.
    P. G. Eliseev, M. Osinski, H. Li, and I. V. Akimova, Appl. Phys. Lett. 75, 3838 (1999).CrossRefGoogle Scholar
  4. 4.
    M. F. Schubert, S. Chhajed, J. K. Kim, et al., Appl. Phys. Lett. 91, 231114 (2007).Google Scholar
  5. 5.
    Y. C. Shen, G. O. Mueller, S. Watanabe, et al., Appl. Phys. Lett. 91, 141101 (2007).Google Scholar
  6. 6.
    M. H. Kim, M. F. Schubert, Q. Dai, et al., Appl. Phys. Lett. 91, 183507 (2007).Google Scholar
  7. 7.
    N. I. Bochkareva, E. A. Zhirnov, A. A. Efremov, et al., Fiz. Tekh. Poluprovodn. 39, 627 (2005) [Semiconductors 39, 594 (2005)].Google Scholar
  8. 8.
    N. I. Bochkareva, D. V. Tarkhin, Yu. T. Rebane, et al., Fiz. Tekh. Poluprovodn. 41, 88 (2007) [Semiconductors 41, 87 (2007)].Google Scholar
  9. 9.
    B. Zhang, T. Egawa, H. Ishikawa, et al., J. Appl. Phys. 95, 3170 (2004).CrossRefADSGoogle Scholar
  10. 10.
    N. I. Bochkareva, A. A. Efremov, Yu. T. Rebane, et al., Fiz. Tekh. Poluprovodn. 40, 122 (2006) [Semiconductors 40, 118 (2006)].Google Scholar
  11. 11.
    Y. T. Rebane, N. I. Bochkareva, V. E. Bougrov, et al., Proc. SPIE 4996, 113 (2003).CrossRefGoogle Scholar
  12. 12.
    H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).CrossRefADSGoogle Scholar
  13. 13.
    H. Morkoc, Nitride Semiconductors and Devices (Springer, Berlin, Heidelberg, 1999).Google Scholar
  14. 14.
    G. E. Pikus, Fundamentals of the Theory of Semiconductor Devices (Nauka, Moscow, 1965) [in Russian].Google Scholar
  15. 15.
    S. F. Chichibu, H. Marchand, M. S. Minsky, et al., Appl. Phys. Lett. 74, 1460 (1999).CrossRefGoogle Scholar
  16. 16.
    C. Gourdon and P. Lavallard, Phys. Stat. Solidi B 153, 641 (1989).CrossRefGoogle Scholar
  17. 17.
    Y. Narukawa, Y. Kawakami, Shizuo Fujita, et al., Phys. Rev. B 55, R1938 (1997).CrossRefADSGoogle Scholar
  18. 18.
    Y. Narukawa, Y. Kawakami, M. Funato, et al., Appl. Phys. Lett. 70, 981 (1997).CrossRefADSGoogle Scholar
  19. 19.
    T. Mukai, M. Yamada, and S. Nakamura, Jap. J. Appl. Phys. 38, L1358 (1999).Google Scholar
  20. 20.
    R. W. Martin, P. G. Middleton, E. P. O’Donnell, and W. Van der Stricht, Appl. Phys. Lett. 74, 263 (1999).CrossRefGoogle Scholar
  21. 21.
    H. Teisseyre, P. Perlin, T. Suski, et al., J. Appl. Phys. 76, 2429 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • N. I. Bochkareva
    • 1
    Email author
  • R. I. Gorbunov
    • 1
  • A. V. Klochkov
    • 1
  • Yu. S. Lelikov
    • 1
  • I. A. Martynov
    • 1
  • Yu. T. Rebane
    • 1
  • A. S. Belov
    • 1
  • Yu. G. Shreter
    • 1
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations