, 42:576 | Cite as

Enhancement of photoluminescence of structures with nanocrystalline silicon stimulated by low-dose irradiation with γ-ray photons

  • I. P. Lisovskyy
  • I. Z. Indutniĭ
  • M. V. Muravskaya
  • V. V. Voitovich
  • E. G. Gule
  • P. E. Shepelyavyĭ
Low-Dimensional Systems


The spectra of infrared transmittance and photoluminescence of thin-film nc-Si/SiO2 structures containing nanocrystalline silicon (nc-Si) and subjected to ionizing radiation (60Co) in the dose range D= 104−107 rad are studied. It is shown for the first time that low radiation doses (5 × 103 rad < D < 105 rad) lead to significant (as large as 40%) increases in the intensity of the photoluminescence band at 1.33 eV. The infrared spectra indicate that there is no variation in the composition and structure of the nanocomposite. The observed effect is accounted for by structural ordering of the nanocrystal-matrix interface; this ordering is stimulated by low-dose irradiation, i.e., removal of defects (recombination centers) at the nc-Si/SiO2 interfaces and resulting enhancement of the radiative-recombination channel.

PACS numbers

61.80.Ed 78.55.Ap 78.67.Bf 78.67.Hc 


  1. 1.
    B. Garrido Fernandez, M. Lopez, C. Garcia, et al., J. Appl. Phys. 91, 798 (2002).CrossRefADSGoogle Scholar
  2. 2.
    M. Lopez, B. Garrido, C. Garcia, et al., Appl. Phys. Lett. 80, 1637 (2002).CrossRefADSGoogle Scholar
  3. 3.
    K. Sato and K. Hirakuri, J. Appl. Phys. 97, 104326 (2005).Google Scholar
  4. 4.
    I. Z. Indutnyy, V. S. Lusenko, I. Yu. Maidanchuk, et al., Semicond. Phys. Quantum Electron. Optoelectron. 9, 9 (2006).Google Scholar
  5. 5.
    D. Cha, J. H. Shin, I.-H. Song, and M.-K. Han, Appl. Phys. Lett. 84, 1287 (2004).CrossRefADSGoogle Scholar
  6. 6.
    I. P. Lisovskii, V. G. Litovchenko, V. G. Lozinskii, and G. I. Steblovskii, Thin Solid Films 213, 164 (1992).CrossRefADSGoogle Scholar
  7. 7.
    I. P. Lisovskii, V. G. Litovchenko, V. G. Lozinskii, et al., J. Non-Cryst. Solids 187, 91 (1995).CrossRefADSGoogle Scholar
  8. 8.
    G. Perez and J. M. Sanz, Thin Solid Films 416, 24 (2002).CrossRefADSGoogle Scholar
  9. 9.
    I. W. Boyd, Appl. Phys. Lett. 51, 418 (1987).CrossRefADSGoogle Scholar
  10. 10.
    I. P. Lisovskyy, I. Z. Indutnyy, B. N. Gnennyy, et al., Fiz. Tekh. Poluprovodn. 37, 98 (2003) [Semicoductors 37, 97 (2003)].Google Scholar
  11. 11.
    A. Szekeres, T. Nikolova, A. Peneva, et al., Mater. Sci. Eng. B 124–125, 504 (2005).CrossRefGoogle Scholar
  12. 12.
    C. T. Sah, IEEE Trans. Nucl. Sci. 23, 1563 (1976).CrossRefADSGoogle Scholar
  13. 13.
    N. L. Dmitruk, V. G. Litovchenko, V. Ya. Kiblik, Cryst. Lattice Defects Amorphous Mater. 13, 381 (1986).Google Scholar
  14. 14.
    N. L. Dmitruk, in Fundamental Problems of Ion Implantation (Alma-Ata, Nauka, 1987), p. 60.Google Scholar
  15. 15.
    V. S. Vavilov and N. A. Ukhin, Radiation Effects in Semiconductors and Semiconductor Devices (Atomizdat, Moscow, 1969) [in Russian].Google Scholar
  16. 16.
    I. P. Lisovskyy, V. G. Litovchenko, and R. O. Litvinov, Phys. Status Solidi A 53, 253 (1979).CrossRefGoogle Scholar
  17. 17.
    I. P. Lisovskyy, V. G. Litovchenko, A. A. Evtukh, et al., in Proceedings of the XI International Conference PTTFN-XI, Ivano-Frankivsk, Ukraine, 2007, p. 112.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • I. P. Lisovskyy
    • 1
  • I. Z. Indutniĭ
    • 2
  • M. V. Muravskaya
    • 1
  • V. V. Voitovich
    • 2
  • E. G. Gule
    • 1
  • P. E. Shepelyavyĭ
    • 1
  1. 1.Lashkarev Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKievUkraine
  2. 2.Institute of PhysicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations