Advertisement

Semiconductors

, Volume 41, Issue 11, pp 1345–1350 | Cite as

CdSe/ZnSe quantum dot structures grown by molecular beam epitaxy with a CdTe submonolayer stressor

  • I. V. Sedova
  • O. G. Lyublinskaya
  • S. V. Sorokin
  • A. A. Sitnikova
  • A. A. Toropov
  • F. Donatini
  • Si Le Dang
  • S. V. Ivanov
Low-Dimensional Systems

Abstract

A procedure for formation of CdSe quantum dots (QDs) in a ZnSe matrix is suggested. The procedure is based on the introduction of a CdTe submonolayer stressor deposited on the matrix surface just before deposition of the material of the QDs. (For CdTe/ZnSe structure, the relative lattice mismatch is Δa/a ≈ 14%.) The stressor forms small strained islands at the ZnSe surface, thus producing local fields of high elastic stresses controlling the process of the self-assembling of the QDs. According to the data of transmission electron microscopy, this procedure allows a considerable increase in the surface density of QDs, with a certain decrease in their lateral dimensions (down to 4.5 ± 1.5 nm). In the photoluminescence spectra, a noticeable (∼150 meV) shift of the peak to longer wavelengths from the position of the reference CdSe/ZnSe QD structure is observed. The shift is due to some transformation of the morphology of the QDs and an increase in the Cd content in the QDs. Comprehensive studies of the nanostructures by recording and analyzing the excitation spectra of photoluminescence, the time-resolved photoluminescence spectra, and the cathodoluminescence spectra show that the emission spectra involve two types of optical transitions, namely, the type-I transitions in the CdSeTe/ZnSe QDs and the type-II transitions caused mainly by the low cadmium content (Zn,Cd)(Se,Te)/ZnSe layer formed between the QDs.

PACS numbers

68.55.Ac 78.55.Et 78.60.Hk 78.57.Hc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Tersoff, Phys. Rev. Lett. 81, 3183 (1998).CrossRefADSGoogle Scholar
  2. 2.
    N. Peranio, A. Rosenauer, D. Gerthsen, et al., Phys. Rev. B 61, 16015 (2000).Google Scholar
  3. 3.
    K. G. Chinyama, K. P. O’Donnell, A. Rosenauer, and D. Gerthsen, J. Cryst. Growth 203, 362 (1999).CrossRefGoogle Scholar
  4. 4.
    S. V. Ivanov, I. V. Sedova, S. V. Sorokin, et al., Phys. Status Solidi C 3, 1229 (2006).CrossRefADSGoogle Scholar
  5. 5.
    M. M. Zverev, D. V. Peregudov, I. V. Sedova, et al., Kvantovaya Élektron. (Moscow) 34, 909 (2004).CrossRefGoogle Scholar
  6. 6.
    I. V. Sedova, S. V. Sorokin, A. A. Toropov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 1135 (2004) [Semiconductors 38, 1099 (2004)].Google Scholar
  7. 7.
    S. V. Sorokin, I. V. Sedova, A. A. Toropov, et al., Electron. Lett. 43(3), (2007).Google Scholar
  8. 8.
    J. Tersoff and R. M. Tromb, Phys. Rev. Lett. 70, 2782 (1993).CrossRefADSGoogle Scholar
  9. 9.
    T. V. Shubina, S. V. Ivanov, A. A. Toropov, et al., Phys. Status Solidi B 229, 489 (2002).CrossRefGoogle Scholar
  10. 10.
    S. V. Ivanov, T. V. Shubina, S. V. Sorokin, et al., Mater. Res. Soc. Symp. Proc. 696, N6.4.1 (2002).Google Scholar
  11. 11.
    W. M. Plotz, K. Hingerl, and H. Sitter, Phys. Rev. B 45, 12 122 (1992).Google Scholar
  12. 12.
    S. V. Ivanov, T. V. Shubina, I. V. Sedova, et al., Poverkhnost: Rentgen. Sinkhrotron. Neĭtron. Issled., No. 10, 6 (2003).Google Scholar
  13. 13.
    I. V. Sedova, S. V. Sorokin, A. A. Sitnikova, et al., in Proceedings of 29th International Symposium on Compound Semiconductors, Ed. by M. Ilegems, G. Weimann, and J. Wagner (Lausanne, Switzerland, 2002), Inst. Phys. Conf. Ser., No. 174, 161 (2003).Google Scholar
  14. 14.
    S. V. Ivanov, J. Alloys Compd. 371, 15 (2004).CrossRefGoogle Scholar
  15. 15.
    A. A. Toropov, I. V. Sedova, O. G. Lyublinskaya, et al., Appl. Phys. Lett. 89, 123 110 (2006).Google Scholar
  16. 16.
    C. G. Van de Walle, Phys. Rev. B 39, 1871 (1989).CrossRefADSGoogle Scholar
  17. 17.
    J. Gu, I. L. Kuskovsky, van der Voort, et al., Phys. Rev. B 71, 045 340 (2005).Google Scholar
  18. 18.
    N. N. Ledentsov, J. Böhrer, M. Beer, et al., Phys. Rev. B 52, 14058 (1995).Google Scholar
  19. 19.
    A. A. Toropov, T. V. Shubina, S. V. Sorokin, et al., Phys. Rev. B 59, 2510 (1999).CrossRefADSGoogle Scholar
  20. 20.
    B. Patton, W. Langbein, and U. Woggon, Phys. Rev. B 68, 125 316 (2003).Google Scholar
  21. 21.
    I. L. Kuskovsky, C. Tian, G. F. Neumark, et al., Phys. Rev. B 63, 155 205 (2001).Google Scholar
  22. 22.
    S. V. Ivanov, A. A. Toropov, T. V. Shubina, et al., Phys. Status Solidi B 241, 531 (2004).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • I. V. Sedova
    • 1
  • O. G. Lyublinskaya
    • 1
  • S. V. Sorokin
    • 1
  • A. A. Sitnikova
    • 1
  • A. A. Toropov
    • 1
  • F. Donatini
    • 2
  • Si Le Dang
    • 2
  • S. V. Ivanov
    • 1
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.CEA-CNRS-UJF Group “Nanophysique et Semiconducteurs”, Laboratoire de Spectrométrie Physique (CNRS UMR5588)Université J. Fourier-GrenobleSt Martin d’HèresFrance

Personalised recommendations