, Volume 41, Issue 9, pp 1117–1125 | Cite as

Reconstruction of dependences of the tunneling current on the oxide voltage using the dynamic current-voltage characteristics of the n +-Si-SiO2-n-Si heterostructures

  • A. G. Zhdan
  • N. F. Kukharskaya
  • V. G. Naryshkina
  • G. V. ChuchevaEmail author
Physics of Semiconductor Devices


Precision measurements of dynamic current-voltage characteristics of an Al-n +-Si-SiO2-n-Si structure with a thin (<50 Å) oxide make it possible to separate the active (I a ) and capacitive (I c ) components from the total current. An algorithm for the analysis of the capacitive component is developed; this algorithm makes it possible to determine in a single experiment the doping level of n-Si, the oxide capacitance C i , and also the density and sign of the charge fixed in the oxide. Dependences of the surface potential in n-Si and the voltage drop across the oxide on the gate potential V g in the transverse electric fields |F| ≤ 10 MV/cm were calculated based on the above data without using any adjustable parameters. At maximum values of |F|, the sheet density of electrons (holes) in n-Si does not exceed 1013 cm−2, which is indicative of the degeneracy and size quantization of electron gas. The dependences I t (V g ) and V i (V g ) were used to recover the current-voltage characteristics of the tunneling current I t (V i ) ≡ I a (V i ); these characteristics were measured within more than ten orders of magnitude of their range of variation in the conditions of both the enhancement of the n-Si surface and the inversion. The observed I t (V i ) characteristics are not quantitatively described in the context of existing concepts of the tunnel effect.

PACS numbers

73.40.Gk 73.40.Qv 85.30.Mn 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Ya. Krasnikov, Constructive-Technological Features of Submicron MOS-Transistors (Tekhnosfera, Moscow, 2002), Part 1 [in Russian].Google Scholar
  2. 2.
    A. Khairurrijal, W. Mizubayashi, S. Miyazaki, and M. Hirose, Appl. Phys. Lett. 77, 3580 (2000).CrossRefADSGoogle Scholar
  3. 3.
    E. P. Nakhmedov, C. Radehaus, and K. Wieczorek, J. Appl. Phys. 97, 064107 (2005).Google Scholar
  4. 4.
    A. Aziz, K. Kassmi, R. Maimouni, et al., Eur. Phys. J.: Appl. Phys. 31, 169 (2005).CrossRefADSGoogle Scholar
  5. 5.
    M. I. Veksler, I. V. Grekhov, and A. F. Shulekin, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 1430 (2005) [Semiconductors 39, 1381 (2005)].Google Scholar
  6. 6.
    G. Bersuker, P. Zeitzoff, G. Brown, and H. R. Huff, Mater. Today 7(1), 26 (2004).Google Scholar
  7. 7.
    O. Blank, H. Reisinger, R. Stengl, et al., J. Appl. Phys. 97, 044107 (2005).Google Scholar
  8. 8.
    S. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981; Mir, Moscow, 1984).Google Scholar
  9. 9.
    E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982).Google Scholar
  10. 10.
    A. G. Zhdan, N. F. Kukharskaya, and G. V. Chucheva, Prib. Tekh. Éksp., No. 2, 120 (2002) [Instrum. Exp. Tech. 45, 256 (2002)].Google Scholar
  11. 11.
    A. G. Zhdan, N. F. Kukharskaya, and G. V. Chucheva, Fiz. Tekh. Poluprovodn. (St. Petersburg) 37, 686 (2003) [Semiconductors 37, 661 (2003)].Google Scholar
  12. 12.
    I. B. Gulyaev, A. G. Zhdan, N. F. Kukharskaya, et al., Mikroélektronika 33, 227 (2004) [Russ. Microelectron. 33, 224 (2004)].Google Scholar
  13. 13.
    C. G. B. Garrett and W. H. Brattain, Phys. Rev. 99, 376 (1955).CrossRefADSGoogle Scholar
  14. 14.
    T. Ando, A. B. Fowler, and F. Stern, Electronic Properties of Two-Dimensional Systems (Am. Phys. Soc., New York, 1982; Mir, Moscow, 1985).Google Scholar
  15. 15.
    E. I. Gol’dman, A. G. Zhdan, and G. V. Chucheva, Prib. Tekh. Éksp., No. 6, 110 (1997) [Instrum. Exp. Tech. 40, 841 (1997)].Google Scholar
  16. 16.
    A. G. Zhdan, E. I. Gol’dman, Yu. V. Gulyaev, and G. V. Chucheva, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 697 (2005) [Semiconductors 39, 666 (2005)].Google Scholar
  17. 17.
    A. G. Zhdan, G. V. Chucheva, and E. I. Gol’dman, Fiz. Tekh. Poluprovodn. (St. Petersburg) 40, 195 (2006) [Semiconductors 40, 190 (2006)].Google Scholar
  18. 18.
    E. I. Gol’dman and V. A. Ivanov, Preprint No. 22 [551], IRÉ AN SSSR (Inst. of Radio Engineering and Electronics, USSR Academy of Sciences, Moscow, 1990).Google Scholar
  19. 19.
    V. L. Bonch-Bruevich and S. G. Kalashnikov, Physics of Semiconductors (Nauka, Moscow, 1977) [in Russian].Google Scholar
  20. 20.
    M. Fukuda, W. Mizubayashi, A. Kohno, et al., Jpn. J. Appl. Phys., Part 2 37, 1534 (1998).CrossRefGoogle Scholar
  21. 21.
    E. Cassan, P. Dollfus, and S. Galdin, J. Non-Cryst. Solids 280, 63 (2001).CrossRefGoogle Scholar
  22. 22.
    E. I. Goldman, N. F. Kukharskaya, and A. G. Zhdan, Solid-State Electron. 48, 831 (2004).CrossRefGoogle Scholar
  23. 23.
    K. J. Yang and C. Hu, IEEE Trans. Electron Devices 46, 1500 (1999).CrossRefGoogle Scholar
  24. 24.
    O. Simonetti, T. Maurel, and M. Jourdain, J. Non-Cryst. Solids 280, 110 (2001).CrossRefGoogle Scholar
  25. 25.
    F. Pellizzer and G. Pavia, J. Non-Cryst. Solids 280, 235 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. G. Zhdan
    • 1
  • N. F. Kukharskaya
    • 1
  • V. G. Naryshkina
    • 1
  • G. V. Chucheva
    • 1
    Email author
  1. 1.Institute of Radio Engineering and ElectronicsRussian Academy of ScencesFryazinoRussia

Personalised recommendations