Advertisement

Semiconductors

, Volume 41, Issue 4, pp 395–401 | Cite as

IBIC characterization of charge transport in CdTe:Cl

  • P. J. Sellin
  • A. W. Davies
  • F. Boroumand
  • A. Lohstroh
  • M. E. Özsan
  • J. Parkin
  • M. Veale
The 8th International Workshop on Beam Injection Assessment of Microstructures in Semiconductors, June 11–14, 2006, St. Petersburg, Russia

Abstracts

Studies of charge transport uniformity in bulk CdTe:Cl have been carried out using ion-beam-induced charge (IBIC) imaging. High resolution maps of charge collection efficiency, mobility-lifetime product (μτ), and drift mobility (μ) were measured using a scanning microbeam of 2 MeV protons focused to a beam diameter of ∼3 μm. Excellent charge transport uniformity was observed in single crystal CdTe:Cl, with electron μτ values of up to 5 × 10−3 cm2/V s. The presence of extended defects such as tellurium inclusions was also studied using IBIC, and their influence on the charge transport performance of CdTe detector structures is discussed.

PACS numbers

72.80.Jc 79.20.Rf 61.80.Jh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Sellin, Nucl. Instrum. Methods Phys. Res. A 513, 332 (2003); A. Owens and A. Peacock, Nucl. Instrum. Methods Phys. Res. A 531, 18 (2004); P. J. Sellin, Nucl. Instrum. Methods Phys. Res. A 563, 1 (2006).CrossRefADSGoogle Scholar
  2. 2.
    S. Rath, P. J. Sellin, M. B. H. Breese, et al., Nucl. Instrum. Methods Phys. Res. A 512, 427 (2003).CrossRefADSGoogle Scholar
  3. 3.
    M. Ayoub, M. Hage-Ali, A. Zumbiehl, et al., IEEE Trans. Nucl. Sci. 49, 1954 (2002).CrossRefGoogle Scholar
  4. 4.
    J. Shen, D. K. Aidun, L. Regel, and W. R. Wilcox, Mater. Sci. Eng. 16, 182 (1993).CrossRefGoogle Scholar
  5. 5.
    N. V. Sochinskii, M. D. Serrano, E. Dieguez, and F. Agullo-Rueda, J. Appl. Phys. 77, 2806 (1995).CrossRefADSGoogle Scholar
  6. 6.
    M. Amman, J. S. Lee, and P. N. Luke, J. Appl. Phys. 92, 3198 (2002).CrossRefADSGoogle Scholar
  7. 7.
    K. Hecht, Z. Phys. 77, 235 (1932).CrossRefADSGoogle Scholar
  8. 8.
    A. Lohstroh, P. J. Sellin, and A. Simon, J. Phys.: Condens. Matter 16, S67 (2004).CrossRefADSGoogle Scholar
  9. 9.
    L. Verger, N. Baffert, M. Rosaz, and J. Rustique, Nucl. Instrum. Methods Phys. Res. A 380, 121 (1996); K. Suzuki, A. Iwata, S. Seto, et al., J. Cryst. Growth 214–215, 909 (2000); K. Suzuki, S. Seto, T. Sawada, and K. Imai, IEEE Trans. Nucl. Sci. 49, 1287 (2002).CrossRefADSGoogle Scholar
  10. 10.
    A. Simon, C. Jeynes, R. P. Webb, et al., Nucl. Instrum. Methods Phys. Res. B 219–220, 405 (2004).CrossRefGoogle Scholar
  11. 11.
    M. B. Breese, D. N. Jamieson, and P. J. C. King, Materials Analysis Using a Nuclear Microprobe (Wiley, New York, 1996).Google Scholar
  12. 12.
    P. J. Sellin, A. Lohstroh, A. Simon, and M. B. Breese, Nucl. Instrum. Methods Phys. Res. A 521, 600 (2004).CrossRefADSGoogle Scholar
  13. 13.
    A. W. Davies, A. Lohstroh, M. E. Özsan, and P. J. Sellin, Nucl. Instrum. Methods Phys. Res. A 546, 192 (2005); P. J. Sellin, A. W. Davies, A. Lohstroh, et al., IEEE Trans. Nucl. Sci. 52, 3074 (2005).CrossRefADSGoogle Scholar
  14. 14.
    S. Wang, P. Sellin, and A. Lohstroh, Appl. Phys. Lett. 88, 023 501 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • P. J. Sellin
    • 1
  • A. W. Davies
    • 1
  • F. Boroumand
    • 1
  • A. Lohstroh
    • 1
  • M. E. Özsan
    • 1
  • J. Parkin
    • 1
  • M. Veale
    • 1
  1. 1.Department of PhysicsUniversity of SurreyGuildfordUK

Personalised recommendations