Advertisement

Semiconductors

, Volume 41, Issue 4, pp 381–386 | Cite as

Si and Ge nanocluster formation in silica matrix

  • Roushdey Salh
  • L. Fitting
  • E. V. Kolesnikova
  • A. A. Sitnikova
  • M. V. Zamoryanskaya
  • B. Schmidt
  • H. -J. Fitting
The 8th International Workshop on Beam Injection Assessment of Microstructures in Semiconductors, June 11–14, 2006, St. Petersburg, Russia

Abstract

High resolution transmission electron microscopy, scanning transmission electron microscopy, and cathodoluminescence have been used to investigate Si and Ge cluster formation in amorphous silicon-dioxide layers. Commonly, cathodoluminescence emission spectra of pure SiO2 are identified with particular defect centers within the atomic network of silica including the nonbridging oxygen hole center associated with the red luminescence at 650 nm (1.9 eV) and the oxygen deficient centers with the blue (460 nm; 2.7 eV) and ultraviolet band (295 nm; 4.2 eV). In Ge+ ion-implanted SiO2, an additional violet emission band appears at 410 nm (3.1 eV). The strong increase of this violet luminescence after thermal annealing is associated with formation of low-dimension Ge aggregates such as dimers, trimers, and higher formations, further growing to Ge nanoclusters. On the other hand, pure silica layers were modified by heavy electron beam irradiation (5 keV; 2.7 A/cm2), leading to electronic as well as thermal dissociation of oxygen and the appearance of under-stoichiometric SiOx. This SiOx will undergo a phase separation and we observe Si cluster formation with a most probable cluster diameter of 4 nm. Such largely extended Si clusters will diminish the SiO2-related luminescence and Si-crystal-related luminescence in the near IR.

PACS numbers

61.46.Df 61.72.Tt 61.82.Fk 78.60.Hk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982).Google Scholar
  2. 2.
    Silica Glass and Its Application, Ed. by I. Fanderlik (Elsevier, Amsterdam, 1991).Google Scholar
  3. 3.
    R. Kashyap, Fiber Bragg Gratings (Academic, New York, 1999).Google Scholar
  4. 4.
    D. Kovalev, H. Heckler, G. Polisski, and F. Koch, Phys. Status Solidi B 215, 871 (1999).CrossRefGoogle Scholar
  5. 5.
    S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, Phys. Rev. B 58, 792 (1998).CrossRefADSGoogle Scholar
  6. 6.
    V. I. Klimov, J. Phys. Chem. B 104, 6112 (2000).CrossRefGoogle Scholar
  7. 7.
    H.-J. Fitting, T. Barfels, A. N. Trukhin, et al., J. Non-Cryst. Solids 303, 218 (2002).CrossRefADSGoogle Scholar
  8. 8.
    S. Agnello, R. Boscaino, M. Cannas, et al., Phys. Rev. B 67, 033 202 (2003).Google Scholar
  9. 9.
    B. Schmidt, Preparation of SiO 2 :Ge Layers (Research Center Rossendorf, Germany, 1997); Preparation of SiO 2 :Si and SiO 2 :O Layers (Research Center Rossendorf, Germany, 2000).Google Scholar
  10. 10.
    H.-J. Fitting, T. Barfels, A. N. Trukhin, and B. Schmidt, J. Non-Cryst. Solids 279, 51 (2001).CrossRefADSGoogle Scholar
  11. 11.
    L. Rebohle, J. von Borany, H. Fröb, and W. Skorupa, Appl. Phys. B 71, 131 (2000).CrossRefADSGoogle Scholar
  12. 12.
    A. N. Trukhin, H.-J. Fitting, T. Barfels, and A. von Czarnowski, J. Non-Cryst. Solids 260, 132 (1999).CrossRefADSGoogle Scholar
  13. 13.
    H.-J. Fitting, T. Ziems, Roushdey Salh, et al., J. Non-Cryst. Solids 351, 2251 (2005).CrossRefADSGoogle Scholar
  14. 14.
    M. A. Stevens Kalceff, Phys. Rev. B 57, 5674 (1998).CrossRefADSGoogle Scholar
  15. 15.
    E. V. Kolesnikova, A. A. Sitnikova, V. I. Sokolov, and M. Zamoryanskaya, Solid State Phenom. 108–109, 729 (2005).CrossRefGoogle Scholar
  16. 16.
    L. A. Bakaleinikov, M. V. Zamoryanskaya, E. V. Kolesnikova, et al., Phys. Solid State 46, 1018 (2004).CrossRefADSGoogle Scholar
  17. 17.
    Roushdey Salh, A. von Czarnowski, M. V. Zamoryanskaya, et al., Phys. Status Solidi A 203, 2049 (2006), DOI 10.1002/pssa.200521443.CrossRefADSGoogle Scholar
  18. 18.
    K. Imakita, M. Fujii, Y. Yamaguchi, and S. Hayashi, Phys. Rev. B 71, 115440 (2005).Google Scholar
  19. 19.
    S. M. Prokes, W. E. Carlos, S. Veprek, and C. Ossadnik, Phys. Rev. B 58, 15632 (1998).Google Scholar
  20. 20.
    A. R. Wilkinson and R. G. Elliman, J. Appl. Phys. 96, 4018 (2004).CrossRefADSGoogle Scholar
  21. 21.
    G. Ledoux, J. Gong, F. Huisken, et al., Appl. Phys. Lett. 80, 4834 (2002).CrossRefADSGoogle Scholar
  22. 22.
    F. Iacona, G. Franzo, and C. Spinella, J. Appl. Phys. 87, 1295 (2000).CrossRefADSGoogle Scholar
  23. 23.
    M. Zacharias, J. Heitmann, R. Scholz, et al., Appl. Phys. Lett. 80, 661 (2002).CrossRefADSGoogle Scholar
  24. 24.
    L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, J. Phys.: Condens. Mater 15, S2887 (2003).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • Roushdey Salh
    • 1
  • L. Fitting
    • 2
  • E. V. Kolesnikova
    • 3
  • A. A. Sitnikova
    • 3
  • M. V. Zamoryanskaya
    • 3
  • B. Schmidt
    • 4
  • H. -J. Fitting
    • 1
  1. 1.Institute of PhysicsUniversity of RostockRostockGermany
  2. 2.School of Applied and Engineering PhysicsCornell UniversityIthacaUSA
  3. 3.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Research Center RossendorfInstitute of Ion Beam Physics and Materials ResearchDresdenGermany

Personalised recommendations