Advertisement

Semiconductors

, Volume 41, Issue 1, pp 87–93 | Cite as

Quantum efficiency and formation of the emission line in light-emitting diodes based on InGaN/GaN quantum well structures

  • N. I. Bochkareva
  • D. V. Tarkhin
  • Yu. T. Rebane
  • R. I. Gorbunov
  • Yu. S. Lelikov
  • I. A. Martynov
  • Yu. G. Shreter
Low-Dimensional Systems

Abstract

The spectra of electroluminescence, photoluminescence, and photocurrent for the In0.2Ga0.8N/GaN quantum-well structures are studied to clarify the causes for the reduction in quantum efficiency with increasing forward current. It is established that the quantum efficiency decreases as the emitting photon energy approaches the mobility edge in the In0.2Ga0.8N layer. The mobility edge determined from the photocurrent spectra is E me = 2.89 eV. At the photon energies hv > 2.69 eV, the charge carriers can tunnel to nonradiative recombination centers with a certain probability, and therefore, the quantum efficiency decreases. The tunnel injection into deep localized states provides the maximum electroluminescence efficiency. This effect is responsible for the origin of the characteristic maximum in the quantum efficiency of the emitting diodes at current densities much lower than the operating densities. Occupation of the deep localized states in the density-of-states “tails” in InGaN plays a crucial role in the formation of the emission line as well. It is shown that the increase in the quantum efficiency and the “red” shift of the photoluminescence spectra with the voltage correlate with the changes in the photocurrent and occur due to suppression of the separation of photogenerated carriers in the field of the space charge region and to their thermalization to deep local states.

PACS numbers

73.40.Kp 73.63.Hs 78.55.Cr 78.60.Fi 78.67.De 85.60.Jb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. S. Jeon, V. Kozlov, Y. K. Song, et al., Appl. Phys. Lett. 69, 4194 (1996).CrossRefADSGoogle Scholar
  2. 2.
    S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).CrossRefADSGoogle Scholar
  3. 3.
    P. Perlin, V. Iota, B. A. Weinstein, et al., Appl. Phys. Lett. 70, 2993 (1997).CrossRefADSGoogle Scholar
  4. 4.
    Y. H. Cjo, G. H. Gainer, A. J. Fischer, et al., Appl. Phys. Lett. 73, 1370 (1998).CrossRefADSGoogle Scholar
  5. 5.
    P. Lefebvre, J. Allegre, B. Gil, et al., Phys. Rev. B 57, R9447 (1998).CrossRefADSGoogle Scholar
  6. 6.
    T. Mukai, K. Takekava, and S. Nakamura, Jpn. J. Appl. Phys., Part 2 37, L839 (1996).CrossRefGoogle Scholar
  7. 7.
    Y. Narukava, Y. Kawakami, M. Funato, et al., Appl. Phys. Lett. 70, 981 (1997).CrossRefADSGoogle Scholar
  8. 8.
    Y. Narukava, Y. Kawakami, S. Fujita, et al., Phys. Rev. B 55, R1938 (1997).CrossRefADSGoogle Scholar
  9. 9.
    P. Fisher, J. Christen, and S. Nakamura, Jpn. J. Appl. Phys., Part 2 39, L129 (2000).CrossRefGoogle Scholar
  10. 10.
    T. Takeuchi, S. Sota, M. Katsuragawa, et al., Jpn. J. Appl. Phys., Part 2 36, L382 (1997).CrossRefGoogle Scholar
  11. 11.
    Y. Narukava, Y. Kavakami, S. Fujita, and S. Nakamura, Phys. Rev. B 59, 10283 (1999).CrossRefADSGoogle Scholar
  12. 12.
    R. W. Martin, P. G. Middleton, E. P. O’Donnell, and W. Van der Stricht, Appl. Phys. Lett. 74, 263 (1999).CrossRefADSGoogle Scholar
  13. 13.
    H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).CrossRefADSGoogle Scholar
  14. 14.
    T. Takeuchi, C. Wetzel, S. Yamaguchi, et al., Appl. Phys. Lett. 73, 1691 (1998).CrossRefADSGoogle Scholar
  15. 15.
    T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys., Part 1 38, 3976 (1999).CrossRefGoogle Scholar
  16. 16.
    K. Domen, R. Soejima, A. Kuramata, and T. Tanahashi, MRS Internet J. Nitride Semicond. Res. 3, 1 (1998).Google Scholar
  17. 17.
    Y. Zohta, H. Kuroda, R. Nii, and S. Nakamura, J. Cryst. Growth 189–190, 816 (1998).CrossRefGoogle Scholar
  18. 18.
    N. I. Bochkareva, E. A. Zhirnov, A. A. Efremov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 627 (2005) [Semiconductors 39, 594 (2005)].Google Scholar
  19. 19.
    Y. T. Rebane, N. I. Bochkareva, V. E. Bougrov, et al., Proc. SPIE 4996, 113 (2003).Google Scholar
  20. 20.
    F. Urbach, Phys. Rev. 92, 1324 (1953).CrossRefADSGoogle Scholar
  21. 21.
    H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).CrossRefADSGoogle Scholar
  22. 22.
    P. Perlin, M. Osinski, P. G. Eliseev, et al., Appl. Phys. Lett. 69, 1680 (1996).CrossRefADSGoogle Scholar
  23. 23.
    H. Morkos, Nitride Semiconductors and Devices (Springer, Berlin, 1999).Google Scholar
  24. 24.
    S. E. Aleksandrov, T. A. Gavrikova, and V. A. Zykov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 1347 (2000) [Semiconductors 34, 1295 (2000)].Google Scholar
  25. 25.
    G. E. Pikus, Fundamentals of the Theory of Semiconductor Devices (Nauka, Moscow, 1965) [in Russian].Google Scholar
  26. 26.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 4th ed. (Nauka, Moscow, 1989; Pergamon, Oxford, 1977).Google Scholar
  27. 27.
    D. S. Sizov, V. S. Sizov, E. E. Zavarin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 264 (2005) [Semiconductors 39, 249 (2005)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • N. I. Bochkareva
    • 1
  • D. V. Tarkhin
    • 1
  • Yu. T. Rebane
    • 1
  • R. I. Gorbunov
    • 1
  • Yu. S. Lelikov
    • 1
  • I. A. Martynov
    • 1
  • Yu. G. Shreter
    • 1
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations