, Volume 40, Issue 10, pp 1178–1187 | Cite as

Concentration-elastic-stress instabilities in the distribution of ions and neutral particles in the insulator layer at the semiconductor surface

  • E. I. Gol’dman
Semiconductor Structures, Interfaces, and Surfaces


Mobile impurities in the form of ions and neutral associations are present in the insulator films that isolate the semiconductor from the metal electrode. If temperatures and the polarizing electric field are sufficiently high, impurities concentrate at the insulator-semiconductor interface where they exchange electrons with the semiconductor. It is shown that the pairwise interaction of particles via the field of elastic stresses caused by the concentration-related expansion of the insulator can give rise to an instability in the impurity distribution that is uniform over the contact. The stationary small-scale ordering of the particles over the contact of the insulator with the semiconductor arises in the solution of point defects, which is accompanied by annular flows of the particles.

PACS numbers

68.55.Ln 73.20.Hb 73.40.Qv 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Khachaturyan, The Theory of Phase Transformations and the Structure of Solid Solutions (Nauka, Moscow, 1974) [in Russian].Google Scholar
  2. 2.
    J. P. Ipatova, V. G. Malyshkin, and V. A. Shchukin, J. Appl. Phys. 74, 7198 (1993).CrossRefADSGoogle Scholar
  3. 3.
    G. N. Gaĭdukov and B. Ya. Lobov, Fiz. Tverd. Tela (Leningrad) 21, 1701 (1979) [Sov. Phys. Solid State 21, 976 (1979)].Google Scholar
  4. 4.
    E. I. Gol’dman, A. G. Zhdan, and G. V. Chucheva, Fiz. Tekh. Poluprovodn. (St. Petersburg) 33, 933 (1999) [Semiconductors 33, 852 (1999)].Google Scholar
  5. 5.
    E. I. Goldman, A. G. Zhdan, and G. V. Chucheva, J. Appl. Phys. 89, 130 (2001).CrossRefADSGoogle Scholar
  6. 6.
    A. L. Roitburd, Solid State Phys. 33, 317 (1978).Google Scholar
  7. 7.
    E. I. Gol’dman, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 984 (2000) [Semiconductors 34, 945 (2000)].Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, 3rd ed. (Nauka, Moscow, 1976; Pergamon, Oxford, 1980), Part 1, p. 315.Google Scholar
  9. 9.
    M. V. Fedoryuk, The Saddle-Point Method (Nauka, Moscow, 1977) [in Russian].zbMATHGoogle Scholar
  10. 10.
    T. Hino and K. Yamashita, J. Appl. Phys. 50, 4879 (1979).CrossRefADSGoogle Scholar
  11. 11.
    D. J. DiMaria, J. Appl. Phys. 52, 7251 (1981).CrossRefADSGoogle Scholar
  12. 12.
    Acoustic Crystals, Ed. by M. P. Shaskol’skaya (Nauka, Moscow, 1982) [in Russian].Google Scholar
  13. 13.
    A. P. Baraban, V. V. Bulavinov, and P. P. Konorov, Electronics of SiO 2 Layers on Silicon (Leningr. Gos. Univ., Leningrad, 1988), p. 55 [in Russian].Google Scholar
  14. 14.
    A. G. Zhdan, Yu. V. Markin, and A. M. Sumaroka, Mikroélektronika 22, 54 (1993).Google Scholar
  15. 15.
    E. I. Gol’dman, Fiz. Tekh. Poluprovodn. (St. Petersburg) 27, 269 (1993) [Semiconductors 27, 150 (1993)].Google Scholar
  16. 16.
    E. I. Gol’dman, A. G. Zhdan, and A. M. Sumaroka, Pis’ma Zh. Éksp. Teor. Fiz. 57, 783 (1993) [JETP Lett. 57, 797 (1993)].Google Scholar
  17. 17.
    E. I. Gol’dman, A. G. Zhdan, and A. N. Ponomarev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 28, 1947 (1994) [Semiconductors 28, 1014 (1994)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • E. I. Gol’dman
    • 1
  1. 1.Institute of Radio Engineering and Electronics (Fryazino Branch)Russian Academy of SciencesFryazino, Moscow oblastRussia

Personalised recommendations