Semiconductors

, Volume 40, Issue 5, pp 605–610

Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs

  • A. A. Efremov
  • N. I. Bochkareva
  • R. I. Gorbunov
  • D. A. Lavrinovich
  • Yu. T. Rebane
  • D. V. Tarkhin
  • Yu. G. Shreter
Physics of Semiconductor Devices

Abstract

The heat model of a light-emitting diode (LED) with an InGaN/GaN quantum well (QW) in the active region is considered. Effects of the temperature and drive current, as well as of the size and material of the heat sink on the light output and efficiency of blue LEDs are studied. It is shown that, for optimal heat removal, decreasing of the LED efficiency as current increases to 100 mA is related to the effect of electric field on the efficiency of carrier injection into the QW. As current further increases up to 400 mA, the decrease in efficiency is caused by Joule heating. It is shown that the working current of LEDs can be increased by a factor of 5–7 under optimal heat removal conditions. Recommendations are given on the cooling of LEDs in a manner dependent on their power.

PACS numbers

85.60.Jb 85.35.Be 78.67.De 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Yamada, T. Mitani, Y. Nurukawa, et al., Jpn. J. Appl. Phys. 41, L1431 (2002).Google Scholar
  2. 2.
    Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, Ed. by S. Nakamura and S. F. Chichibu (Taylor and Francis, London, 2000).Google Scholar
  3. 3.
    Yu. G. Shreter, Yu. T. Rebane, V. A. Zykov, and I. G. Sidorov, Wide-gap Semiconductors (Nauka, St. Petersburg, 2001) [in Russian].Google Scholar
  4. 4.
    Y. T. Rebane, N. I. Bochkareva, V. E. Bougrov, et al., Proc. SPIE 4996, 113 (2003).Google Scholar
  5. 5.
    N. I. Bochkareva, E. A. Zhirnov, A. A. Efremov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 627 (2005) [Semiconductors 39, 594 (2005)].Google Scholar
  6. 6.
    S. Lee, S. Song, V. Au, and K. P. Moran, Proc. ASME/JSME Therm. Eng. Conf. 4, 199 (1995).Google Scholar
  7. 7.
    T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 38, 3976 (1999).Google Scholar
  8. 8.
    Y. Xi and E. F. Schubert, Appl. Phys. Lett. 85, 2163 (2004).CrossRefADSGoogle Scholar
  9. 9.
    Y. Xi, J.-Q. Xi, Th. Gessmann, et al., Appl. Phys. Lett. 86, 031 907 (2005).Google Scholar
  10. 10.
    M. Kuball, S. Pajasingam, A. Sarua, et al., Appl. Phys. Lett. 82, 124 (2003).CrossRefADSGoogle Scholar
  11. 11.
    C. Winnewiesser and J. Schneider, J. Appl. Phys. 89, 3091 (2001).ADSGoogle Scholar
  12. 12.
  13. 13.
    D. A. Steigerwald, J. C. Bhat, D. Collins, et al., IEEE J. Sel. Top. Quantum Electron. 8, 310 (2002).Google Scholar
  14. 14.
    F. P. Incropera and D. P. De Witt, Fundamentals of Heat and Mass Transfer (Wiley, New York, 1990).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. A. Efremov
    • 1
  • N. I. Bochkareva
    • 2
  • R. I. Gorbunov
    • 2
  • D. A. Lavrinovich
    • 2
  • Yu. T. Rebane
    • 2
  • D. V. Tarkhin
    • 2
  • Yu. G. Shreter
    • 2
  1. 1.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  2. 2.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations