Advertisement

Plasma Physics Reports

, Volume 45, Issue 11, pp 1011–1025 | Cite as

Modulation Instability of Bright Envelope Soliton and Rogue Waves in Ultra-relativistic Degenerate Dense Electron–Ion–Positron Plasma

  • S. N. PaulEmail author
  • A. R. ChowdhuryEmail author
  • I. Paul
NONLINEAR PHENOMENA
  • 19 Downloads

Abstract

Modulation instability, bright envelope soliton, and rogue waves of ion acoustic waves in dense plasma consisting of ultra-relativistic degenerate electrons and positrons, cold and mobile inertial ions, and negatively charged static dust particles have been investigated using Fried and Ichikawa method. Nonlinear Schrödinger equation has been derived and the growth rate of modulationally unstable ion acoustic wave in such plasma are discussed. It has been found that ion acoustic wave will be always modulationally unstable for all possible values of density of positrons, electrons, and charged dust particle. The solutions of envelope solitons and rogue waves are obtained from the nonlinear Schrödinger equation. The theoretical results have been analyzed numerically and graphically for different values of plasma parameters. It is found that only bright envelope soliton would be excited in the ultra-relativistic degenerate plasma. Our results are new and may be applicable for the study of nonlinear wave processes in relativistic degenerate dense plasmas of astrophysical objects, namely, in white dwarfs and neutron stars.

Notes

ACKNOWLEDGMENTS

The authors are grateful to the reviewer for his constructive comments for the improvement of this paper.

REFERENCES

  1. 1.
    S. A. Kaplan and V. N. Tsytovich, Plasma Astrophysics (Nauka, Moscow, 1972; Pergamon, Oxford, 1973), Chaps. 3, 4.Google Scholar
  2. 2.
    P. Carlqvist, Astrophys. Space. Sci. 87, 21( 1982).Google Scholar
  3. 3.
    B. Chakraborty, S. N. Paul, M. Khan, and B. Bhattacharyya, Phys. Rep. 114, 182 (1982)Google Scholar
  4. 4.
    B. Punsly, Black Hole Gravitohydromagnetics (Astrophysics and Space Science Library, Vol. 355) (Springer, New York, 2008), p. 34.Google Scholar
  5. 5.
    S. V. Bulanov, T. Zh. Esirkepov, M. Kando, J. Koga, K. Kondo, and G. Korn, Plasma Phys. Rep. 41, 1 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    G. C. Das and S. N. Paul, Phys. Fluids 28, 823 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    A. Roychowdhury, G. Pakira, and S. N.Paul, IEEE Trans. Plasma Sci. 17, 1989804 (1989)Google Scholar
  8. 8.
    R. Saeed, A. Shah, and M. Haq, Phys. Plasmas 17, 102301 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    B. C.Kalita, R. Das, and H. K. Sarmah, Phys. Plasmas 18, 012304 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    H. Pakzad, Astrophys. Space. Sci. 332, 269 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    N. C. Lee, Phys. Plasmas 19, 082303 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    B. Ghosh and S. Banerjee, J. Plasma Phys. 81, 905810308 (2015).CrossRefGoogle Scholar
  13. 13.
    B. Sahu, Pramana 76, 933 ( 2011) .ADSCrossRefGoogle Scholar
  14. 14.
    B. Ghosh, S. Chandra, and S. N. Paul, Pramana 78, 779 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    S. Chandra and B. Ghosh, Indian J. Pure Applied Phys. 51, 627 (2013).Google Scholar
  16. 16.
    M. McKerr, F. Haas, and I. Kourakis, Phys. Plasmas 23, 052120 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    S. Chandrasekhar, Philos. Mag. 11, 592 (1931).CrossRefGoogle Scholar
  18. 18.
    S. Chandrasekhar, Mon. Not. R. Astron. Soc. 170, 405 (1935).Google Scholar
  19. 19.
    H. A. Shah, W. Masood, M. N. S. Qureshi, and N. L. Tsintsadze, Phys. Plasmas 18, 102306 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    W. Masood and B. Eliasson, Phys. Plasmas 18, 034503 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    S. Chandra, B. Ghosh, and S. N. Paul, Astrophys. Space Sci. 343, 213 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    S. Chandra, S. Das, A. Chandra, B. Ghosh, and A. Jash, WASET Int. J. Math. Comp. Phys. Elect. Comp. Eng. 9, 305 (2015).Google Scholar
  23. 23.
    A. A. Mamun and P. K. Shukla, Phys. Plasmas 17, 104504 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    A. A. Mamun and P. K. Shukla, Phys. Lett. A 374, 4238 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    A. Esfandyari-Kalejahi, M. Akbari-Moghanjoughi, and E. Saberian, Plasma Fusion Res. 5, 045 (2010).Google Scholar
  26. 26.
    N. Roy, M. S. Zobaer, and A. A. Mamun, J. Mod. Phys. 3, 850 (2012).CrossRefGoogle Scholar
  27. 27.
    A. Rahman, I. Kourakis, and A. Qamar, IEEE Trans. Plasma Sci. 43, 974 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, Phys. Rep. 528, 47 (2013).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    H. Bailung, S. K. Sharma, and Y. Nakamura, Phys. Rev. Lett. 107, 255005 ( 2011).Google Scholar
  30. 30.
    A. Ankievicz, N. Devine, and N. Akhmediev, Phys. Lett. A 373, 3997 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Y. Wang, J. T. Li, C. Q. Dai, and J. F. Zang, Phys. Lett. A 337, 2097 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    D. E. Fried and Y. H. Ichikawa, J. Phys. Soc. Jpn. 34, 1073 (1973).ADSCrossRefGoogle Scholar
  33. 33.
    S. N. Paul and A. Roychowdhury, Chaos Solitons Fract. 91, 406 (2016).ADSCrossRefGoogle Scholar
  34. 34.
    N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, Phys. Rev. E 80, 026601 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    Active Galactic Nuclei, Ed. by H. R. Miller and P. J. Witta (Springer, Berlin, 1987).Google Scholar
  36. 36.
    F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).ADSCrossRefGoogle Scholar
  37. 37.
    S. Ali, W. W. Moslem, P. K. Shukla, and R. Schlickeiser, Phys. Plasmas 14, 082307 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    M. J. Rees, The Very Early Universe (Cambridge University Press, Cambridge, 1983).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Physics, Jadavpur UniversityKolkataIndia
  2. 2.East Kolkata Centre for Science Education and ResearchKolkataIndia

Personalised recommendations