Advertisement

Plasma Physics Reports

, Volume 45, Issue 11, pp 991–996 | Cite as

Electron-Acoustic Shock Waves in Cylindrical and Spherical Geometry with Non-Extensive Electrons

  • S. BansalEmail author
  • M. Aggarwal
PLASMA DYNAMICS
  • 18 Downloads

Abstract

We consider nonplanar electron acoustic shock waves composed of stationary ions, cold and non-extensive hot electrons under multiple temperature electrons model in unmagnetized plasma. In this model Modified Korteweg-de Vries–Burger (KdVB) equation is obtained in the cylindrical/spherical coordinates. On the basis of the solutions of KdVB equation, the variation of shock waves features (amplitude, velocity, and width) with different plasma parameters are analyzed. Dissipation effect is introduced in the model by means of kinematic viscosity term. KdVB equation always leads to monotonic solitons and no oscillatory part or peak may appear. It is observed that the combined effect of particle density \((\alpha )\), nonextensivity parameter q, electron temperature ratio \((\theta )\), and kinetic viscosity \(({{\eta }_{0}})\) significantly changes the properties of shock waves in nonplanar geometry especially in spherical coordinates. Results could be helpful to analyze the soliton features in laboratory and in the space environments.

Notes

ACKNOWLEDGMENTS

Sona Bansal and Munish Aggarwal are thankful to Punjab Technical University, Kapurthala (India) for their support.

REFERENCES

  1. 1.
    K. Watanabe and T. Taniuti, J. Phys. Soc. Jpn. 43, 1819 (1977).ADSCrossRefGoogle Scholar
  2. 2.
    M. Y. Yu and P. K. Shukla, Phys. Plasmas 29, 1409 (1983).Google Scholar
  3. 3.
    R. L. Tokar and S. P. Gary, Geophys. Res. Lett. 11, 1180 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    S. P. Gary and R. L. Tokar, Phys. Fluids 28, 2439 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    R. L. Mace and M. A. Helberg, Phys. Plasmas 43, 239 (1990).CrossRefGoogle Scholar
  6. 6.
    N. Dubouloz, R. Pottelete, M. Malingre, and R. A. Treumann, Geophys. Res. Lett. 18, 155 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    N. Dubouloz, R. A. Treumann, R. Pottelete, and M. Malingre, Geophys. Res. Lett. 98, 17 (1993).CrossRefGoogle Scholar
  8. 8.
    R. Pottelette, R. E. Ergun, R. A. Treumann, M. Berthomier, C. W. Carlson, J. P. McFadden, and I. Roth, Geophys. Res. Lett. 26, 2629 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    M. Berthomier, R. Pottelete, M. Malingre, and Y. Khotyaintsev, Phys. Plasmas 7, 2987 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Mamun and P. K. Shukla, Geophys. Res. Lett. 107, 1135 (2002).CrossRefGoogle Scholar
  11. 11.
    T. S. Gill, H. Kaur, and N. S. Saini, Chaos Solitons Fract. 30, 1020 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    T. S. Gill, H. Kaur, S. Bansal, N. S. Saini, and P. Bala, Eur. Phys. J. D 41, 151 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    M. F. Thomsen, H. C. Barr, S. P. Gary, W. C. Feldman, and T. E. Cole, Geophys. Res. Lett. 88, 11 (1983).Google Scholar
  14. 14.
    W. C. Feldman, R. C. Anderson, S. J. Bame, S. P. Gary, J. T. Gosling, D. J. Mc Comas, M. F. Thomsen, G. Paschmann, and M. M. Hoppe, Geophys. Res. Lett. 88, 15 (1983).Google Scholar
  15. 15.
    S. D. Bale, P. J. Kellogg, D. E. Larson, R. P. Lin, K. Goetz, and R. P. Lepping, Geophys. Res. Lett. 25, 2929 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    A. Renyi, Acta Math. Hungar. 6, 285 (1995).CrossRefGoogle Scholar
  17. 17.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    B. Sahu and M. Tribeche, Phys. Plasmas 19, 022304 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    E. K. EL-Shewy, Astrophys. Space Sci. 335, 387 (2011).Google Scholar
  20. 20.
    A. Bains, M. Tribeche, and T. S. Gill, Phys. Lett. A 20, 375 (2011).Google Scholar
  21. 21.
    H.R. Pakzad, Astrophys. Space Sci. 337, 217 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    M. Tribeche and R. Sabry, Astrophys. Space Sci. 341, 579 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    M. Berthomier, R. Pottelete, and L. Stenflo, Phys. Plasmas 9, 1474 (2002).MathSciNetCrossRefGoogle Scholar
  24. 24.
    H. R. Pakzad, Phys. Scr. 83, 4 (2011).Google Scholar
  25. 25.
    M. Tribeche and L. Djebarni, Phys. Plasmas 17, 12450 (2010).Google Scholar
  26. 26.
    A. Danekhar, N. S. Saini, M. A. Helberg, and I. Kourakis, Phys. Plasmas 18, 072902 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    R. Amour, M. Tribeche, and P. K. Shukla, Astrophys. Space Sci. 344, 161 (2012).Google Scholar
  28. 28.
    H. R. Pakzad and M. Tribeche, Astrophys. Space Sci. 330, 95 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    S. S. Duha and A. A. Mamun, Phys. Let. A 373, 1287 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    S. Yasmin, M. Asaduzzaman, and A. A. Mamun, Astrophys. Space Sci. 345, 291 (2013).CrossRefGoogle Scholar
  31. 31.
    M. G. Hafez, M. R. Talukder, M. H. Ali, Plasma Phys. Rep. 43, 499 (2017).ADSCrossRefGoogle Scholar
  32. 32.
    S. Bansal, M. Aggarwal, and T. S. Gill, Braz. J. Phys. 48, 638 (2018).ADSCrossRefGoogle Scholar
  33. 33.
    S. Bansal, M. Aggarwal, and T. S. Gill, Plasma Sci. Tech. 21, 015301 (2018).Google Scholar
  34. 34.
    M. Geladin, Phys. Plasmas 1, 1159 (1994).ADSCrossRefGoogle Scholar
  35. 35.
    N. C. Lee, Phys. Plasmas 16, 042316 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    M. Dutta, N. Chakrabarti, R. Roychoudhury, and M. Khan, Phys. Plasmas 18, 102301 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    S. Sultana and I. Kourakis, Eur. Phys. J. D 66, 100 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    H. G. Abdelwahed and E. K. El-Shewy, Commun. Theor. Phys. 60, 445 (2013).ADSCrossRefGoogle Scholar
  39. 39.
    S. Maxon and J. Viecelli, Phys. Rev. Lett. 32, 4 (1984).ADSCrossRefGoogle Scholar
  40. 40.
    J. K. Xue, Phys. Plasmas 10, 3430 (2003).ADSCrossRefGoogle Scholar
  41. 41.
    B. Sahu and R. Roychoudhury, Phys. Plasmas 10, 4162 (2009).ADSCrossRefGoogle Scholar
  42. 42.
    A. A. Mamun and P. K. Shukla, Phys. Rev. E 80, 07401 (2009).ADSGoogle Scholar
  43. 43.
    W. Massod, N. Imtiaz, and M. Siddiq, Phys. Scr. 80, 015501 (2009).ADSCrossRefGoogle Scholar
  44. 44.
    K. Javidan and H. R. Pakzad, Indian J. Phys. 87, 83 (2012).ADSCrossRefGoogle Scholar
  45. 45.
    R. Sabry, S. K. El-Labany, and P. K. Shukla, Phys. Plasmas 15, 122310 (2008).ADSCrossRefGoogle Scholar
  46. 46.
    B. Sahu and M. Tribeche, Phys. Plasmas 19, 022304 (2012).ADSCrossRefGoogle Scholar
  47. 47.
    S. Bansal, M. Aggarwal, and T. S. Gill, J. Astrophys. Astron. 39, 27 (2018).ADSCrossRefGoogle Scholar
  48. 48.
    M. Y. Yu, and H. Luo, Phys. Plasmas 15, 024504 (2008).ADSCrossRefGoogle Scholar
  49. 49.
    F. Verheest and M. A. Hellberg, Phys. Plasmas 21, 022307 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.I. K. Gujral Punjab Technical UniversityKapurthalaIndia
  2. 2.Sikh National CollegeBangaIndia
  3. 3.Department of Applied Science, Lyallpur Khalsa College of EngineeringJalandharIndia

Personalised recommendations