Advertisement

Plasma Physics Reports

, Volume 45, Issue 8, pp 761–769 | Cite as

Electron Transport Coefficients in Nonequilibrium Plasmas of Water Vapor and Fuel–Oxygen Mixtures

  • I. V. Kochetov
  • N. L. AleksandrovEmail author
PLASMA DIAGNOSTICS
  • 9 Downloads

Abstract

The electron transport coefficients in weakly ionized nonuniform nonequilibrium plasmas of water vapor and fuel–oxygen mixtures are calculated as functions of the degree of fuel oxidation. The calculations are performed for hydrogen and hydrocarbon fuels. It is shown that the production of water vapor during fuel oxidation strongly affects the electron transport coefficients. Using the calculated coefficients, the parameter ranges are determined in which thermocurrent instability can develop in the gas mixtures under study. The domain of reduced electric fields at which this instability develops extends with increasing the degree of fuel oxidation and becomes the largest under complete fuel oxidation.

Notes

FUNDING

This work was supported by the Russian Science Foundation, grant no. 17-12-01051.

REFERENCES

  1. 1.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1997).Google Scholar
  2. 2.
    L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974).Google Scholar
  3. 3.
    N. L. Aleksandrov, A. P. Napartovich, and A. N. Starostin, Sov. J. Plasma Phys. 6, 618 (1980).ADSGoogle Scholar
  4. 4.
    N. L. Aleksandrov, A. M. Konchakov, A. P. Napartovich, and A. N. Starostin, in Plasma Chemistry, Ed. by B. M. Smirnov (Energoatomizdat, Moscow, 1984), Vol. 11, p. 3 [in Russian].Google Scholar
  5. 5.
    V. Yu. Baranov, A. P. Napartovich, and A. N. Starostin, Itogi Nauki Tekh., Ser. Fiz. Plazmy 5, 90 (1984).Google Scholar
  6. 6.
    N. L. Aleksandrov, in Electron Kinetics and Applications of Glow Discharges, Ed. by U. Kortshagen and L.D. Tsendin (Plenum Press, New York, 1998), p. 179.Google Scholar
  7. 7.
    N. A. Dyatko, I. V. Kochetov, and A. P. Napartovich, Plasma Sources Sci. Technol. 23, 043001 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    N. L. Aleksandrov and A. M. Konchakov, Sov. J. Plasma Phys. 7, 103 (1981).ADSGoogle Scholar
  9. 9.
    N. L. Aleksandrov and A. M. Konchakov, High Temp. 21, 1 (1983).ADSGoogle Scholar
  10. 10.
    N. L. Aleksandrov and A. M. Konchakov, Sov. J. Plasma Phys. 11, 650 (1985).ADSGoogle Scholar
  11. 11.
    N. L. Aleksandrov and I. V. Kochetov, Sov. J. Plasma Phys. 17, 426 (1991).Google Scholar
  12. 12.
    N. L. Aleksandrov and I. V. Kochetov, J. Phys. D 26, 387 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    A. Fridman, Plasma Chemistry (Cambridge University Press, Cambridge, 2008).CrossRefGoogle Scholar
  14. 14.
    M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J. L. Zimmermann, New J. Phys. 11, 115012 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. C. H. M. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. Fernandez Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, at al., Plasma Sources Sci. Technol. 25, 053002 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    S. M. Starikovskaia, J. Phys. D 39, R265 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    I. V. Adamovich, I. Choi, N. Jiang, J.-H. Kim, S. Keshav, W. R. Lempert, E. Mintusov, M. Nishihara, M. Samimy, and M. Uddi, Plasma Sources Sci. Technol. 18, 034018 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    A. Starikovskiy and N. Aleksandrov, Progr. Energy Comb. Sci. 39, 61 (2013).CrossRefGoogle Scholar
  19. 19.
    S. M. Starikovskaia, J. Phys. D 47, 353001 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Ju and W. Sun, Progr. Energy Comb. Sci. 48, 21 (2015).CrossRefGoogle Scholar
  21. 21.
    I. V. Kochetov and N. L. Aleksandrov, Plasma Sources Sci. Technol. 27, 115004 (2018).ADSCrossRefGoogle Scholar
  22. 22.
    J. Warnatz, U. Maas, and R. Dibble, Combustion (Springer, Berlin, 2001).CrossRefzbMATHGoogle Scholar
  23. 23.
    www.lxcat.net/TRINITI.Google Scholar
  24. 24.
    A. A. Ionin, I. V. Kochetov, A. P. Napartovich, and N. N. Yuryshev, J. Phys. D 40, R25 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    www.lxcat.net/Hayashi.Google Scholar
  26. 26.
    I. V. Kochetov, V. G. Naumov, V. G. Pevgov, and V. M. Shashkov, Quant. Electron. 9, 847 (1979).ADSGoogle Scholar
  27. 27.
    M. A. Deminskii, I. V. Chernysheva, S. Ya. Umanskii, M. I. Strelkova, A. E. Baranov, I. V. Kochetov, A. P. Napartovich, T. Sommerer, S. Saddoughi, J. Herbon, and B. V. Potapkin, Russ. J. Phys. Chem. B 7, 410 (2013).CrossRefGoogle Scholar
  28. 28.
    M. Hayashi, in Nonequilibrium Processes in Partially Ionized Gases. NATO ASI Series (Series B: Physics), Ed. by M. Capitelli and J. N. Bardsley (Plenum, New York, 1990), Vol. 220, p. 333.Google Scholar
  29. 29.
    M. Yousfi, N. Azzi, P. Segur, I. Gallimberti, and S. Stangherlin, Report CPAT (Université Paul Sabatier, Toulouse, 1988).Google Scholar
  30. 30.
    J. H. Parker and J. J. Lowke, Phys. Rev. 181, 290 (1969).ADSCrossRefGoogle Scholar
  31. 31.
    N. A. Dyatko, I. V. Kochetov, and A. P. Napartovich, Plasma Sources Sci. Technol. 23, 043001 (2014).ADSCrossRefGoogle Scholar
  32. 32.
    A. V. Timofeev, Sov. Phys. Tech. Phys. 15, 140 (1970).ADSGoogle Scholar
  33. 33.
    Yu. S. Akishev, N. A. Dyatko, I. N. Loratkin, I. V. Minina, A. P. Napartovich, and I. V. Kochetov, VII All-Union Conference on Physics of Low-Temperature Plasmas, Tashkent, 1987, Book of Abstracts, Vol. 1, p. 261.Google Scholar
  34. 34.
    N. L. Aleksandrov and I. V. Kochetov, J. Phys. D 24, 2164 (1991).ADSCrossRefGoogle Scholar
  35. 35.
    N. L. Aleksandrov, I. V. Kochetov, and A. M. Konchakov, J. Phys. D 28, 1072 (1995).ADSCrossRefGoogle Scholar
  36. 36.
    N. L. Aleksandrov and I. V. Kochetov, Sov. J. Plasma Phys. 17, 430 (1991).Google Scholar
  37. 37.
    V. A. Shveigert, Sov. J. Plasma Phys. 14, 739 (1988).Google Scholar
  38. 38.
    I. V. Kochetov and N. L. Aleksandrov, Plasma Sources Sci. Technol. 28, 025009 (2019).ADSCrossRefGoogle Scholar
  39. 39.
    M. Sato, Plasma Sources Sci. Technol. 17, 024021 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    V. Rybkin, E. Kuvaldina, A. Grinevich, A. Choukourov, H. Iwai, and H. Biederman, Plasma Process. Polim. 5, 778 (2008).CrossRefGoogle Scholar
  41. 41.
    A. K. Shuaibov, A. A. General, V. A. Kel’man, and I. V. Shevera, Tech. Phys. Lett. 34, 588 (2008).ADSCrossRefGoogle Scholar
  42. 42.
    A. K. Shuaibov, A. A. Heneral, Yu. O. Shpenik, Yu. V. Zhmenyak, I. V. Shevera, and R. V. Gritsak, Tech. Phys. 54, 1238 (2009).CrossRefGoogle Scholar
  43. 43.
    S. V. Avtaeva, A. A. General, and V. A. Kel’man, J. Phys. D 43, 315201 (2010).CrossRefGoogle Scholar
  44. 44.
    X. Mao, A. Rousso, Q. Chen, and Y. Ju, in Proceedings of the 56th AIAA Science and Technical Forum and Exposition, Kissimmee, FL, 2018, Paper AIAA 2018-09.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Troitsk Institute for Innovation and Fusion ResearchTroitskRussia
  2. 2.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia

Personalised recommendations