Plasma Physics Reports

, Volume 45, Issue 5, pp 454–458 | Cite as

On the Feasibility of Plasma Separation of Spent Nuclear Fuel Components in a Nonuniform Magnetic Field

  • V. P. Smirnov
  • A. A. Samokhin
  • A. V. Gavrikov
  • S. D. Kuzmichev
  • R. A. UsmanovEmail author
  • N. A. Vorona


A new concept of plasma separation of spent nuclear fuel components in a variable-cross-section chamber with a nonuniform magnetic field is proposed. Numerical simulation performed in axisymmetric geometry in the single-particle approximation have shown that, in a nonuniform magnetic field of <1.6 kG, at voltages of up to 100 V, and for a chamber radius varying from 20 cm to 60 cm over a distance of up to 1 m, spent nuclear fuel components can be spatially separated into three mass groups: actinides with masses of m ~ 240 amu, used for subsequent recovery of the fuel; fission products with \(m = 70{-} 160\) amu; and light elements with \(m < 60\) amu, which primarily include the structural materials and associated gases (nitrogen, oxygen). Separation of the latter two groups is important for practical use, because it potentially reduces the cost of the further treatment of separated radioactive waste.



This work was supported by the Russian Science Foundation, project no. 14-29-00231.


  1. 1.
    S. J. Zweben, R. Gueroult, and N. J. Fisch, Phys. Plasmas 25, 90901 (2018).CrossRefGoogle Scholar
  2. 2.
    D. A. Dolgolenko and Yu. A. Muromkin, Phys. Usp. 60, 994 (2017).CrossRefGoogle Scholar
  3. 3.
    A. Y. Shadrin, K. N. Dvoeglazov, A. G. Maslennikov, V. A. Kashcheev, S. G. Tret’yakova, O. V. Shmidt, V. L. Vidanov, O. A. Ustinov, V. I. Volk, S. N. Veselov, and V. S. Ishunin, Radiochemistry 58, 271 (2016).CrossRefGoogle Scholar
  4. 4.
    Hansoo Lee, Geun-IL Park, Jae-Won Lee, Kweon-Ho Kang, Jin-Mok Hur, Jeong-Guk Kim, Seungwoo Paek, In-Tae Kim, and IL-Je Cho, Sci. Technol. Nuclear Install. 2013, 343492 (2013).Google Scholar
  5. 5.
    D. A. Dolgolenko and Yu. A. Muromkin, Phys. Usp. 52, 345 (2009).CrossRefGoogle Scholar
  6. 6.
    A. J. Fetterman and N. J. Fisch, Phys. Plasmas 18, 94503 (2011).CrossRefGoogle Scholar
  7. 7.
    V. M. Bardakov, S. D. Ivanov, A. V. Kazantsev, and N. A. Strokin, Plasma Sci. Technol 17, 862 (2015).CrossRefGoogle Scholar
  8. 8.
    V. L. Paperny, V. I. Krasov, N. V. Lebedev, N. V. Astrakchantsev, and A. A. Chernikch, Plasma Sources Sci. Technol. 24, 15009 (2014).CrossRefGoogle Scholar
  9. 9.
    V. A. Zhil’tsov, V. M. Kulygin, N. N. Semashko, A. A. Skovoroda, V. P. Smirnov, A. V. Timofeev, E. G. Kudryavtsev, V. I. Rachkov, and V. V. Orlov, At. Energ. 101, 302 (2006).Google Scholar
  10. 10.
    E. I. Skibenko, Yu. V. Kovtun, A. M. Egorov, and V. B. Yuferov, Vopr. At. Nauki Tekh., Ser. Fiz. Radiat. Povrezh. Radiat. Materialoved., No. 2, 141 (2011).Google Scholar
  11. 11.
    N. A. Vorona, A. V. Gavrikov, A. A. Samokhin, V. P. Smirnov, and Yu. S. Khomyakov, Yad. Fiz. Inzhinir, Nos. 11−12, 944 (2014).Google Scholar
  12. 12.
    T. Ohkawa and R. L. Miller, Phys. Plasmas 9, 5116 (2002).CrossRefGoogle Scholar
  13. 13.
    C. E. Ahlfeld, J. D. Wagoner, D. L. Sevier, and R. L. Freeman, in Proceedings of the 21st IEEE/NPS Symposium on Fusion Engineering, Knoxville, TN, 2005.

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. P. Smirnov
    • 1
  • A. A. Samokhin
    • 1
  • A. V. Gavrikov
    • 1
  • S. D. Kuzmichev
    • 1
    • 2
  • R. A. Usmanov
    • 1
    • 2
    Email author
  • N. A. Vorona
    • 1
  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia

Personalised recommendations