Advertisement

Plasma Physics Reports

, Volume 45, Issue 5, pp 517–521 | Cite as

Inactivation of Microorganisms on Plane Surfaces by a Dielectric Barrier Discharge

  • V. A. Panov
  • L. M. VasilyakEmail author
  • S. P. Vetchinin
  • E. A. DeshevayaEmail author
  • V. Ya. PecherkinEmail author
  • E. E. SonEmail author
APPLIED PHYSICS
  • 22 Downloads

Abstract

Inactivation of spore microorganisms on a dielectric surface by a dielectric barrier discharge with plane electrodes was studied experimentally. It is shown that, at an average specific discharge power of 0.3 W/cm3 and exposure time of 0.5–60 s, the degree of inactivation amounts to three orders of magnitude and depends weakly on the exposure time.

Notes

FUNDING

This work was supported by the Russian Academy of Sciences, program No. IV.4.10 “Fundamental Problems of Physical and Chemical Mechanics for ISS Experiments.”

REFERENCES

  1. 1.
    U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003).CrossRefGoogle Scholar
  2. 2.
    Z. Zhang, Z. Xu, C. Cheng, J. Wei, Ya. Lan, G. Ni, Q. Sun, S. Qian, H. Zhang, W. Xia, J. Shen, Y. Meng, and P. K. Chu, Plasma Chem. Plasma Process. 37, 415 (2017).CrossRefGoogle Scholar
  3. 3.
    Y. Ma, J. R. Chen, B. Yang, S. C. Pu, and Q. S. Yu, IEEE Trans. Plasma Sci. 42, 1607 (2014).CrossRefGoogle Scholar
  4. 4.
    M. Laroussi, Plasma Process. Polym. 11, 1138 (2014).CrossRefGoogle Scholar
  5. 5.
    D. Yuan, C. Ding, Y. He, Z. Wang, S. Kumar, Ya. Zhu, and K. Cen, Plasma Chem. Plasma Process. 37, 1165 (2017).CrossRefGoogle Scholar
  6. 6.
    G. Vezzu, J. L. Lopez, A. Freilich, and K. H. Becker, IEEE Trans. Plasma Sci. 37, 890 (2009).CrossRefGoogle Scholar
  7. 7.
    M. A. Malik, Plasma Chem. Plasma Process. 36, 737 (2016).CrossRefGoogle Scholar
  8. 8.
    V. N. Vasilets and A. B. Shekhter, in Plasma for Bio-Decontamination, Medicine and Food Security (NATO Science for Peace and Security Series A: Chemistry and Biology), Ed. by V. Zdenko, K. Hensel, and Yu. Akishev (Springer, Dordrecht, 2012), p. 393.Google Scholar
  9. 9.
    T. Homola, R. Krumpolec, M. Zemánek, J. Kelar, P. Synek, T. Hoder, and M. Černák, Plasma Chem. Plasma Process. 37, 1149 (2017).CrossRefGoogle Scholar
  10. 10.
    H. M. Abourayana, V. Milosavljević, P. Dobbyn, and D. P. Dowling, Plasma Chem. Plasma Process. 37, 1223 (2017).CrossRefGoogle Scholar
  11. 11.
    S. Onsuratoom, R. Rujiravanit, T. Sreethawong, S. Tokura, and S. Chavadej, Plasma Chem. Plasma Process. 30, 191 (2010).CrossRefGoogle Scholar
  12. 12.
    C. L. Enloe, T. E. McLaughlin, R. D. van Dyken, K. D. Kachner, E. J. Jumper, T. C. Corke, M. Post, and O. Haddad, AIAA J. 42, 595 (2004).CrossRefGoogle Scholar
  13. 13.
    M. I. Lomaev, E. A. Sosnin, and V. F. Tarasenko, Prog. Quant. Electron. 36, 51 (2012).CrossRefGoogle Scholar
  14. 14.
    D. Florez, R. Diez, and H. Piquet, IEEE Trans. Plasma Sci. 44, 1160 (2016).CrossRefGoogle Scholar
  15. 15.
    G. Matafonova and V. Batoev, Chemosphere 89, 637 (2012).CrossRefGoogle Scholar
  16. 16.
    T. Kuroki, T. Oishi, T. Yamamoto, and M. Okubo, IEEE Trans. Ind. Appl. 49, 293 (2013).CrossRefGoogle Scholar
  17. 17.
    W. Bo, Plasma Chem. Plasma Process. 37, 1121 (2017).CrossRefGoogle Scholar
  18. 18.
    N. N. Misra, A. Martynenko, F. Chemat, L. Paniwnyk, F. J. Barba, and A. R. Jambrak, Crit. Rev. Food Sci. Nutrit. 41, 1 (2017).Google Scholar
  19. 19.
    Plasma for Bio-Decontamination, Medicine and Food Security (NATO Science for Peace and Security Series A: Chemistry and Biology), Ed. by V. Zdenko, K. Hensel, and Yu. Akishev (Springer, Dordrecht, 2012).Google Scholar
  20. 20.
    A. Fridman and G. Friedman. Plasma Medicine (Wiley, New York, 2013).Google Scholar
  21. 21.
    D. B. Graves, Phys. Plasmas 21, 080901 (2014).CrossRefGoogle Scholar
  22. 22.
    S. A. Ermolaeva, E. V. Sysolyatina, N. I. Kolkova, P. Bortsov, A. I. Tuhvatulin, M. M. Vasiliev, A. Y. Mukhachev, O. F. Petrov, S. Tetsuji, B. S. Naroditsky, G. E. Morfill, V. E. Fortov, A. I. Grigoriev, N. A. Zigangirova, and A. L. Gintsburg, J. Med. Microbiol. 61, 793 (2012).CrossRefGoogle Scholar
  23. 23.
    E. Sysolyatina, M. Vasiliev, M. Kurnaeva, I. Kornienko, O. Petrov, V. Fortov, A. Gintsburg, E. Petersen, and S. Ermolaeva, J. Phys. D 49, 294002 (2016).CrossRefGoogle Scholar
  24. 24.
    T. Sasaki, S. Hida, R. Ito, Y. Kondo, K. Takahashi, T. Kikuchi, N. Harada, and K. Ohnuma, IEEJ Trans. Fund. Mater. 137, 328 (2017).CrossRefGoogle Scholar
  25. 25.
    N. Yu. Babaeva and M. J. Kushner, Plasma Sources Sci. Technol. 23, 065047 (2014).CrossRefGoogle Scholar
  26. 26.
    N. Yu. Babaeva, W. Tian, and M. J. Kushner, J. Phys. D 47, 235201 (2014).CrossRefGoogle Scholar
  27. 27.
    W. Kowalski, Ultraviolet Germicidal Irradiation Handbook UVGI for Air and Surface Disinfection (Springer, Dordrecht, 2009).CrossRefGoogle Scholar
  28. 28.
    X. Lu, G. V. Naidis, M. Laroussi, S. Reuter, D. B. Graves, and K. Ostrikov, Phys. Rep. 630, 1 (2016).MathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Lin, N. Chernets, J. Han, Y. Alicea, D. Dobrynin, G. Fridman, T.A. Freeman, A. Fridman, and V. Miller, Plasma Process. Polym. 12, 1117 (2015).CrossRefGoogle Scholar
  30. 30.
    D. B. Graves, J. Phys. D 45, 263001 (2012).CrossRefGoogle Scholar
  31. 31.
    S. A. Ermolaeva, A. F. Varfolomeev, M. Yu. Chernukha, D. S. Yurov, M. M. Vasiliev, A. A. Kaminskaya, M. M. Moisenovich, J. M. Romanova, A. N. Murashev, I. I. Selezneva, T. Shimizu, E. V. Sysolyatina, I. A. Shaginyan, O. F. Petrov, E. I. Mayevsky, et al., J. Med. Microbiol. 60, 75 (2011).CrossRefGoogle Scholar
  32. 32.
    O. S. Zhdanova, V. S. Kuznetsov, V. A. Panarin, V. S. Skakun, E. A. Sosnin, and V. F. Tarasenko, Prikl. Fiz., No. 2, 36 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Biomedical Problems, Russian Academy of SciencesMoscowRussia

Personalised recommendations