Advertisement

Plasma Physics Reports

, Volume 45, Issue 5, pp 445–453 | Cite as

Impact of a High-Power Pulsed Plasma Flow with a Surface of High-Temperature Materials

  • M. N. KazeevEmail author
  • V. F. Kozlov
  • V. S. Koidan
  • G. Herdrich
  • J. Schmidt
PLASMA–SURFACE INTERACTION
  • 31 Downloads

Abstract

The objective of this work is to study the behavior of surface layers of high-temperature metals in their interaction with a powerful pulsed plasma flow produced by a high-power ablative pulsed plasma thruster. This plasma generator produces plasma flows with a directed velocity of (7–9) × 106 cm/s, an initial diameter of 1.5–2 cm, and a maximum number density of about 1018 cm–3, as well as a maximum power of 5 GW. The main measured values are the residual temperature of the tungsten specimens and the evaporated mass. Also, metallographic analysis of the specimens was performed. The basis of the research method is to analyze the experimental data with the help of a numerical model describing the heating and evaporation of the material upon absorption of pulsed energy fluxes taking into account the evaporation kinetics based on the Hertz–Knudsen expression. Based on the developed numerical model and the obtained experimental data, the kinetics of evaporation of tungsten at high power fluxes to the surface (up to 1 GW/cm2) is investigated.

REFERENCES

  1. 1.
    I. Langmuir, Phys. Rev. 2, 329 (1913).CrossRefGoogle Scholar
  2. 2.
    I. Langmuir, J. Am. Chem. Soc. 54, 2798 (1932).CrossRefGoogle Scholar
  3. 3.
    R. Szwarc, E. R. Plante, and J. J. Diamond, J. Res. Natl. Inst. Stan. 69A, 417 (1965).CrossRefGoogle Scholar
  4. 4.
    A. S. Pagan, B. Massuti-Ballester, and G. Herdrich, Front. Appl. Plasma Technol. 9, 7 (2016).Google Scholar
  5. 5.
    A. Boxberger and G. Herdrich, in Proceedings of the 35th International Electric Propulsion Conference, Atlanta, GA, 2017, Paper IEPC-2017-339.Google Scholar
  6. 6.
    N. I. Arkhipov, V. P. Bakhtin, S. G. Vasenin, A. M. Zhitlukhin, S. M. Kurkin, V. M. Safronov, and D. A. Toporkov, Plasma Phys. Rep. 24, 309 (1998).Google Scholar
  7. 7.
    I. M. Poznyak, N. I. Arkhipov, S. V. Karelov, V. M. Safronov, and D. A. Toporkov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 37 (1), 70 (2014).Google Scholar
  8. 8.
    B. I. Khripunov, V. S. Koidan, A. I. Ryazanov, V. M. Gureev, S. N. Kornienko, S. T. Latushkin, A. S. Rupyshev, E. V. Semenov, V. S. Kulikauskas, and V. V. Zatekin, Phys. Proc. 71, 63 (2015).CrossRefGoogle Scholar
  9. 9.
    I. M. Poznyak, N. S. Klimov, V. L. Podkovyrov, V. M. Safronov, A. M. Zhitlukhin, and D. V. Kovalenko, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 35 (4), 23 (2012).Google Scholar
  10. 10.
    G. A. Bleicher and V. P. Krivobokov, Erosion of the Surface of a Solid under the Action of Powerful Beams of Charged Particles (Science, Novosibirsk, 2014).Google Scholar
  11. 11.
    A. Nawaz, U. Bauder, H. Böhrk, G. Herdrich, and M. Auweter-Kurtz, in Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, 2007, Paper AIAA-2007-5280.Google Scholar
  12. 12.
    G. Herdrich, M. Fertig, D. Petkow, S. Kraus, S. Lohle, and M. Auweter-Kurtz, Vacuum 85, 1016 (2010).CrossRefGoogle Scholar
  13. 13.
    R. L. Burton and P. J. Turchi, J. Propul. Power 14, 716 (1998).CrossRefGoogle Scholar
  14. 14.
    M. N. Kazeev, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov (Nauka, Moscow, 2000), Vol. III, p. 493 [in Russian].Google Scholar
  15. 15.
    M. N. Kazeev, Prikl. Fiz., No. 4, 14 (2000).Google Scholar
  16. 16.
    S. I. Anisimov, Ya. A. Imas, G. Romanov, and Yu. V. Khodyko, Action of High-Power Radiation on Metals (Nauka, Moscow, 1970) [in Russian].Google Scholar
  17. 17.
    M. N. Kazeev, V. F. Kozlov, and G. A. Popov, in Proceedings of the 27th International Electric Propulsion Conference, Pasadena, CA, 2001, Paper IEPC-01-159.Google Scholar
  18. 18.
    N. I. Arkhipov, V. P. Bakhtin, S. G. Vasenin, A. M. Zhitlukhin, S. M. Kurkin, V. M. Safronov, and D. A. Toporkov, Plasma Phys. Rep. 25, 236 (1999).Google Scholar
  19. 19.
    S. I. Anisimov and B. S. Luk’yanchuk, Phys. Usp. 45, 293 (2002).CrossRefGoogle Scholar
  20. 20.
    Yu. V. Afanas’ev and O. H. Krokhin, in The Physics of High Energy Densities, Ed. by P. Caldirola and H. Knoepfel (Academic, New York, 1971), p. 278.Google Scholar
  21. 21.
    J. P. Hirth and G. M. Pound, Condensation and Evaporation: Nucleation and Growth Kinetics (Pergamon Press, Oxford, 1963).Google Scholar
  22. 22.
    P. N. Smith and R. G. Ward, Can. Metallurg. Quart. 5 (2), 77 (1966).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. N. Kazeev
    • 1
    Email author
  • V. F. Kozlov
    • 1
  • V. S. Koidan
    • 1
  • G. Herdrich
    • 2
  • J. Schmidt
    • 2
  1. 1.National Research Center “Kurchatov Institute”MoscowRussia
  2. 2.University of Stuttgart, Institute of Space Systems, Baden-WürttembergStuttgartGermany

Personalised recommendations