Advertisement

Plasma Physics Reports

, Volume 45, Issue 5, pp 492–500 | Cite as

Regime Transition of Pin-to-Plate Nanosecond Pulsed Discharge under Low Pressure

  • Z. W. Ding
  • Y. W. LiEmail author
  • L. Pang
  • Z. Zhuang
  • W. Ma
  • B. L. Zhang
DIAGNOSTICS OF PULSED SYSTEMS
  • 16 Downloads

Abstract

In order to study air discharge characteristics in the inlet of supersonic aircraft and explore an effective way to avoid such adverse regimes of discharge as spark, arc, or corona discharge, a nanosecond pulsed pin-to-plate discharge experiment is carried out for pressure ranging from 500 to 5000 Pa and temperature from 295 to 425 K. The study shows that glow-to-corona and corona-to-glow transitions can be realized by changing pressure. Specifically, with the temperature of 295 K and interelectrode distance of 10 mm, the pressures of corona discharge and glow discharge are 4500 and 1000 Pa, respectively, for the corresponding applied voltage of 4.56 and 8.25 kV. However, glow-to-spark transition cannot be obtained by varying pressure but increasing the applied voltage, which is a determined factor, and the peak voltage increases to 12.4 kV under spark regime. Overall, the regimes of discharge are jointly determined by interelectrode distance and pressure; but temperature could also effectively influence the discharge, the higher the temperature, the easier the breakdown is. The experiment results pave the way for follow-up further research on the characteristics of discharge in supersonic airflow.

Notes

FUNDING

This work was supported by the National Natural Science Foundation of China (11372352, 51776222) and China Postdoctoral Science Foundation (2017T100772, 2016M590972).

REFERENCES

  1. 1.
    I. V. Adamovich and M. Nishihara, in Proceedings of the 29th International Conference on Phenomena in Ionized Gases, Cancún, 2009. Google Scholar
  2. 2.
    S. V. Bobashev, A. V. Erofeev, and T. A. Lapushkina, in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, 2006, AIAA Paper 2006-1373.Google Scholar
  3. 3.
    P. Y. Yang, B. L. Zhang, and Y. W. Li, Acta Aeronout. Astronaut. Sinica 35, 1539 (2014) [in Chinese].Google Scholar
  4. 4.
    G. Correale, I. B. Popov, A. E. Rakitin, and A. Y. Starikovski, in Proceedings of the 49th Aerospace Sciences Meeting, Orlando, FL, 2011, AIAA Paper 2011-1079.Google Scholar
  5. 5.
    N. A. Popov, in Proceedings of the 51st AIAA Aerospace Sciences Meeting, Dallas, TX, 2013, AIAA Paper 2013-1052.Google Scholar
  6. 6.
    Y. X. Long, H. X. Ling, X. S. Meng, F. Liu, and S. J. Luo, in Proceedings of the 52nd AIAA Aerospace Sciences Meeting, Reston, VA, 2014, AIAA Paper 2014-0933.Google Scholar
  7. 7.
    M. C. Paliwoda and J. Rovey, in Proceedings of the 54th AIAA Science and Technology Forum and Exposition, San Diego, CA, 2016, AIAA Paper 2016-0197.Google Scholar
  8. 8.
    I. Sernenov, A. Starikovskiy, and N. Shneider, in Proceedings of the 54th AIAA Science and Technology Forum and Exposition, San Diego, CA, 2016, AIAA Paper 2016-4307.Google Scholar
  9. 9.
    A. C. Rousso, J. K. Lefkowitz, and Y. G. Ju, in Proceedings of the 54th AIAA Science and Technology Forum and Exposition, San Diego, CA, 2016, AIAA Paper 2016-0958.Google Scholar
  10. 10.
    R. C. Murray, S. H. Zaidi, and M. N. Shneider, in Proceedings of the 41st AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, 2003, AIAA Paper 2003-1049.Google Scholar
  11. 11.
    R. C. Murray, S. H. Zaidi, and M. R. Carraro, in Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, 2004, AIAA Paper 2004-1025.Google Scholar
  12. 12.
    P. Tardiveau, N. Moreau, and S. Bentaleb, J. Phys. D 42, 175202 (2009).CrossRefGoogle Scholar
  13. 13.
    P. Tardiveau, N. Moreau, and F. Jorand, IEEE Trans. Plasma Sci. 36, 894 (2008).CrossRefGoogle Scholar
  14. 14.
    V. F. Tarasenko, E. Kh. Baksht, and E. A. Sosnin, Plasma Phys. Rep. 44, 520 (2018).CrossRefGoogle Scholar
  15. 15.
    M. Janda, Z. Machala, and L. Dvonč, J. Phys. D 48, 035201 (2015).CrossRefGoogle Scholar
  16. 16.
    D. Z. Pai, D. A. Lacoste, and C. O. Laux, Plasma Sources Sci. Technol. 19, 065015 (2010).CrossRefGoogle Scholar
  17. 17.
    D. Z. Pai, G. D. Stancu, and D. A. Lacoste, Plasma Sources Sci. Technol. 18, 045030 (2009).CrossRefGoogle Scholar
  18. 18.
    D. Z. Pai, D. A. Lacoste, and C. O. Laux, J. Appl. Phys. 107, 093303 (2010).CrossRefGoogle Scholar
  19. 19.
    T. Shao, V. F. Tarasenko, and C. Zhang, J. Appl. Phys. 113, 093301 (2013).CrossRefGoogle Scholar
  20. 20.
    T. Shao, C. Zhang, and R. X. Wang, High Voltage Eng. 42, 685 (2016) [in Chinese].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Z. W. Ding
    • 1
  • Y. W. Li
    • 1
    • 2
    Email author
  • L. Pang
    • 3
  • Z. Zhuang
    • 1
  • W. Ma
    • 1
  • B. L. Zhang
    • 1
  1. 1.Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering UniversityXi’anChina
  2. 2.Science and Technology on Combustion, Thermal-Structure and Internal Flow Laboratory, Northwestern Polytechnical UniversityXi’anChina
  3. 3.State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations