Advertisement

Plasma Physics Reports

, Volume 45, Issue 4, pp 414–419 | Cite as

Coulomb Dust Spheres in a Glow Discharge in Neon at Cryogenic Temperatures

  • D. N. PolyakovEmail author
  • V. V. Shumova
  • L. M. Vasilyak
APPLIED PHYSICS

Abstract

The discharge parameters for the formation of charged spherical dust structures (Coulomb dust spheres) in neon plasma at a discharge tube wall temperature of 77 K are determined. The dust spheres were experimentally observed at fixed neon pressures of 0.15, 0.9, and 1.2 Torr. They were also obtained by extrapolation at pressures of 0.42 and 0.65 Torr. The dust spheres form at the discharge current corresponding to the intersection points of the dependences of the radial and axial dimensions of the dust structures on the discharge current. The correlation between the plasma parameters at which the dust spheres are formed and their composition, phase and dynamic states of their components, and dimensions of the dust spheres is analyzed. The variations in the parameters of the discharge plasma and dust spheres caused by a change in the gas pressure are numerically simulated. A continuous second-order phase transition is discovered in dust spheres at pressures of 0.15–0.65 Torr. An increase in the “chemical potential” of dust spheres is found near the liquidus line and the line separating the dust mixture components on the PI phase diagram.

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 16-02-00991.

REFERENCES

  1. 1.
    V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, J. Phys. D 50, 405202 (2017).CrossRefGoogle Scholar
  2. 2.
    Complex and Dusty Plasmas: From Laboratory to Space, Ed. by V. E. Fortov and G. E. Morfill (CRC, Boca Raton, FL, 2009; Fizmatlit, Moscow, 2012).Google Scholar
  3. 3.
    S. Stauss, H. Muneoka, and K. Terashima, Plasma Sources Sci. Technol. 27, 023003 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    D. N. Polyakov, L. M. Vasilyak, and V. V. Shumova, Surf. Eng. Appl. Electrochem. 51, 143 (2015).CrossRefGoogle Scholar
  5. 5.
    G. S. Oehrlein and S. Hamaguchi, Plasma Sources Sci. Technol. 27, 023001 (2018).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Huttel, Gas-Phase Synthesis of Nano-Particles (Wiley VCH, Weinheim, 2017).CrossRefGoogle Scholar
  7. 7.
    V. E. Fortov, L. M. Vasilyak, S. P. Vetchinin, V. S. Zimnukhov, A. P. Nefedov, and D. N. Polyakov, Dokl. Phys. 47, 21 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    O. F. Petrov and V. E. Fortov, Contrib. Plasma Phys. 53, 767 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, Plasma Sources Sci. Technol. 26, 08LT01 (2017).CrossRefGoogle Scholar
  10. 10.
    V. V. Balabanov, L. M. Vasilyak, S. P. Vetchinin, A. P. Nefedov, D. N. Polyakov, and V. E. Fortov, JETP 92, 86 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, Prikl. Fiz., No. 2, 36 (2018).Google Scholar
  12. 12.
    M. Shindo, A. Samarian, and O. Ishihara, JPS Conf. Proc. 1, 015049 (2014).Google Scholar
  13. 13.
    V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, J. Phys. Conf. Ser. 774, 012181 (2016).CrossRefGoogle Scholar
  14. 14.
    I. S. Samoilov, V. P. Baev, A. V. Timofeev, R. Kh. Amirov, A. V. Kirillin, V. S. Nikolaev, and Z. V. Bedran, JETP 124, 496 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    R. E. Boltnev, M. M. Vasiliev, E. A. Kononov, and O. F. Petrov, JETP 126, 561 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    O. Arp, D. Block, M. Klindworth, and A. Piel, Phys. Plasmas 12, 122102 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    V. E. Fortov, V. I. Molotkov, A. P. Nefedov, and O. F. Petrov, Phys. Plasmas 6, 1759 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    S. N. Antipov, M. M. Vasiliev, M. M. Alyapyshev, O. F. Petrov, and V. E. Fortov, J. Phys. Conf. Ser. 511, 012008 (2014).CrossRefGoogle Scholar
  19. 19.
    D. N. Polyakov, V. V. Shumova, and L. M. Vasilyak, Vestn. DGU, Ser. Estestv. Nauki 33 (1), 22 (2018). http://vestnik.dgu.ru/Stat/v2018-est-1-3.pdf.Google Scholar
  20. 20.
    L. M. Vasilyak, S. P. Vetchinin, D. N. Polyakov, and V. E. Fortov, Vestn. DGU, Ser. Estestv. Nauki, No. 4, 23 (2007). http://vestnik.dgu.ru/Stat/2007.4.4.pdf.Google Scholar
  21. 21.
    A. V. Shavlov, V. A. Dzhumandzhi, and S. N. Romanyuk, Phys. Let. A. 376, 39 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, Plasma Sources Sci. Technol. 23, 065008 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, J. Phys. Conf. Ser. 653, 012132 (2015).CrossRefGoogle Scholar
  24. 24.
    V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, Plasma Sources Sci. Technol. 26, 035011 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    L. G. D’yachkov, A. G. Khrapak, S. A. Khrapak, and G. E. Morfill, Phys. Plasmas 14, 042102 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    D. N. Polyakov, V. V. Shumova, and L. M. Vasilyak, Digest J. Nanomater. Biostruct. 9, 1249 (2014).Google Scholar
  27. 27.
    L. M. Vasilyak, S. P. Vetchinin, D. N. Polyakov, and V. E. Fortov, JETP 100, 1029 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    A. V. Fedoseev, G. I. Sukhinin, A. R. Abdirakhmanov, M. K. Dosbolayev, and T. S. Ramazanov, Contrib. Plasma Phys. 56, 234 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. N. Polyakov
    • 1
    Email author
  • V. V. Shumova
    • 1
  • L. M. Vasilyak
    • 1
  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations